

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin¹

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

Commission Regulation (EC) No 737/2007³ (hereinafter referred to as 'the Regulation') lays down the procedure for the renewal of the inclusion of a first group of active substances in Annex I to Council Directive 91/414/EEC and establishes the list of those substances. Azoxystrobin is one of the first group of active substances listed in the Regulation.

In accordance with Article 6 of the Regulation, the notifier Syngenta submitted a dossier on azoxystrobin to the United Kingdom and the Czech Republic, being the designated rapporteur Member State (RMS), and co-rapporteur Member State (co-RMS), respectively. In accordance with Article 10 of the Regulation, the United Kingdom prepared an Assessment Report in consultation with the Czech Republic, which was submitted to the EFSA and the Commission of the European Communities (hereafter referred to as 'the Commission'). The Assessment Report was received by the EFSA on 10 June 2009.

In accordance with Article 11 of the Regulation, the EFSA distributed the Assessment Report to Member States and the notifier for comments on 12 June 2009. The EFSA collated and forwarded all comments received to the Commission on 13 July 2009.

In accordance with Article 12, following consideration of the Assessment Report and the comments received, the Commission requested the EFSA to arrange an expert consultation on the Assessment Report as appropriate and deliver its conclusions on azoxystrobin.

The conclusions presented in this report were reached on the basis of the evaluation of the representative uses of azoxystrobin as a fungicide on cereals and Brassicae vegetables, as proposed by the notifier. Full details of the representative uses can be found in Appendix A to this report.

There were data gaps identified in the section for identity and analytical methods.

In the mammalian toxicology section, an area of concern was raised with regard to the technical specification, since the one agreed during the first Annex I inclusion and the one proposed by the notifier during the Annex I renewal procedure were considered by the experts not to be covered by the batches used in the toxicological assessment. It is noted that if the technical specification as proposed by the rapporteur Member State for the renewal procedure in May 2009 could be agreed on, then this would be considered adequate to cover the toxicological assessment.

¹ On request from the European Commission, Question No EFSA-Q-2009-00809, issued on 12 March 2010.

² Correspondence: praper@efsa.europa.eu

³ OJ L169, 29.06.2007, p.10

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance azoxystrobin. EFSA Journal 2010; 8(4):15421542. [110 pp.]. doi:10.2903/j.efsa.2010.1542. Available online: www.efsa.europa.eu

No critical area of concern was identified in the residues section. Based on metabolism studies conducted on three distinct plant groups (cereals, fruits and oilseed/pulse crops), the residue in plants was defined as azoxystrobin for monitoring and risk assessment. The same residue definition was set by default for animal products, azoxystrobin being extensively metabolised in animals. However, the definition for risk assessment has to be considered provisional, pending additional information on the toxicological relevance of metabolites L1, L4 and L9. Considering the representative uses on Brassicae and cereals, no chronic concerns are expected, the Theoretical Maximum Daily Intake (TMDI) being less than 2% of the Acceptable Daily Intake (ADI). However, an additional chronic exposure of *ca*. 5% ADI has to be considered, as the result of the presence of the metabolite R234886 in groundwater (up to $22 \mu g/L$).

The data available on fate and behaviour in the environment are basically sufficient to carry out the required environmental exposure assessments at EU level for the representative uses. However, the detailed quantification of a group of unidentified, minor transformation products, found in one soil incubation, was not available. Therefore there is no assessment for groundwater contamination of any potentially formed minor soil transformation products that would trigger further evaluation. The potential for groundwater exposure by the metabolite R234886 is predicted to be high over a wide range of geoclimatic conditions represented by the FOCUS groundwater scenarios. Since the concentration of this metabolite was predicted to be above 10 μ g/L over a range of FOCUS groundwater scenarios, this was identified as a critical area of concern. However, the metabolite R234886 was considered as non-relevant in groundwater.

The environmental risk assessment indicated no critical areas of concern. The risk assessment to all non-target species was addressed except for the aquatic organisms.

KEY WORDS

Azoxystrobin, peer review, risk assessment, pesticide, fungicide

TABLE OF CONTENTS

Summary	1
Table of contents	3
Background	4
The active substance and the formulated product	6
Conclusions of the evaluation	6
1. Identity, physical/chemical/technical properties and methods of analysis	6
2. Mammalian toxicity	6
3. Residues	7
4. Environmental fate and behaviour	8
5. Ecotoxicology	9
6. Overview of the risk assessment of compounds listed in residue definitions for the environmenta	1
compartments 1	12
6.1. Soil 1	12
6.2. Ground water 1	13
6.3. Surface water and sediment 1	4
6.4. Air 1	15
List of studies to be generated, still ongoing or available but not peer reviewed1	6
Particular conditions proposed to be taken into account to manage the risk(s) identified 1	16
Issues that could not be finalised 1	16
Critical areas of concern 1	17
References 1	8
Appendices 1	9
Abbreviations)8

BACKGROUND

Commission Regulation (EC) No 737/2007⁴ (hereinafter referred to as 'the Regulation') lays down the procedure for the renewal of the inclusion of a first group of active substances in Annex I to Council Directive 91/414/EEC and establishes the list of those substances. Azoxystrobin is one of the first group of active substances listed in the Regulation.

In accordance with Article 6 of the Regulation, the notifier Syngenta submitted a dossier on azoxystrobin to the United Kingdom and the Czech Republic, being the designated rapporteur Member State (RMS), and co-rapporteur Member State (co-RMS), respectively. In accordance with Article 10 of the Regulation, the United Kingdom prepared an Assessment Report (The United Kingdom, 2009a) in consultation with the Czech Republic, which was submitted to the EFSA and the Commission of the European Communities (hereafter referred to as 'the Commission'). The Assessment Report was received by the EFSA on 10 June 2009.

In accordance with Article 11 of the Regulation, the EFSA distributed the Assessment Report to Member States and the notifier for comments on 12 June 2009. A 30-day period was provided for commenting. In addition, the EFSA conducted a public consultation on the Assessment Report. The EFSA collated and forwarded all comments received to the Commission on 13 July 2009. At the same time, the collated comments were forwarded to the RMS for compilation in the format of a Reporting Table. The notifier was invited to respond to the comments in column 3 of the Reporting Table. The RMS also provided a response to the comments in column 3.

In accordance with Article 12, following consideration of the Assessment Report and the comments received, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 18 September 2009, the Commission requested the EFSA to arrange a consultation with Member State experts as appropriate and deliver its conclusions on azoxystrobin. The need for expert consultation was considered in a telephone conference between the EFSA, the RMS, the co-RMS and the Commission on 26 August 2009. On the basis of the comments received, the notifier's response to the comments, and the RMS' subsequent evaluation thereof, it was concluded that the EFSA should organise a consultation with Member State experts in the areas of mammalian toxicology, environmental fate and behaviour and ecotoxicology.

The outcome of the telephone conference, together with EFSA's further consideration of the comments, is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, were reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in December 2009.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a fungicide on cereals and Brassicae vegetables, as proposed by the notifier. A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report (EFSA, 2010), which is a compilation of the documentation developed to evaluate and address all issues raised in the peer

⁴ OJ L169, 29.06.2007, p.10

review, from the initial commenting phase to the conclusion. The Peer Review Report comprises the following documents:

- the comments received,
- the Reporting Table (revision 1-1; 27 August 2009),
- the Evaluation Table (5 February 2010),
- the report(s) of the scientific consultation with Member State experts (where relevant).

Given the importance of the Assessment Report including its addendum (compiled version of December 2009 containing all individually submitted addenda) (The United Kingdom, 2009b) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Azoxystrobin is the ISO common name for methyl (E)-2-{2[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate (IUPAC).

The representative formulated product for the evaluation was "Amistar", a suspension concentrate (SC), containing 250 g/L azoxystrobin, registered under different trade names in Europe.

The representative uses are as a fungicide applied to broccoli, cauliflower, Brussels sprouts, kale, barley and wheat. Full details of the GAP can be found in the list of end points in Appendix A to this conclusion.

CONCLUSIONS OF THE EVALUATION

1. Identity, physical/chemical/technical properties and methods of analysis

The minimum purity of azoxystrobin as manufactured should not be less than 965 g/kg, which is in compliance with the FAO Specification 571/TC (August 2009).

QC data on the analysis of the technical material are required to support finalisation and agreement of the technical material specification. During the peer review appropriate levels of some impurities could not be agreed on. Toluene was considered as an impurity of toxicological relevance based on its hazards, however the assessment of its maximum level was not finalised.

Besides the specification, the assessment of the data package revealed no issues that need to be included as critical areas of concern with respect to the identity, physical, chemical and technical properties of azoxystrobin or the respective formulation. The main data regarding the identity of azoxystrobin and its physical and chemical properties are given in Appendix A of this conclusion.

Adequate analytical methods are available for the determination of azoxystrobin in the technical material and in the representative formulation, as well as for the determination of the relevant impurities in the technical material.

The multi-method DFG-S19 is applicable to determine residues of azoxystrobin in dry crops, fruits with high acid content and commodities with high water content. Adequate LC-MS/MS methods are also available to monitor azoxystrobin residues in food of plant origin. Residues of azoxystrobin in animal matrices can be monitored by GC-NPD. Monitoring of residues of azoxystrobin in groundwater, drinking water and surface water can be done by GC-MSD. Pending on the data gap identified in section 4, the residue definition for water might change and therefore further methods could be required in the future. Adequate methods are available for the determination of residues of azoxystrobin in soil and air.

According to the currently agreed classification under Annex I of Directive $67/548/\text{EEC}^5$, azoxystrobin is classified as T, and as a consequence, a data gap was identified for adequate analytical methods for body fluids and tissues.

2. Mammalian toxicity

Azoxystrobin was discussed at the PRAPeR 71 meeting of experts on Mammalian Toxicology (October 2009). The experts concluded that the specification is covered by the toxicological assessment if it complies with the rapporteur Member State's proposal from May 2009 (Volume 4, Table C.1.2-3; The United Kingdom, 2009a); in the notifier's proposal for the Annex I renewal, which reduces the levels of a number of impurities compared to the specification agreed for Annex I inclusion, two impurities are not covered by the toxicological assessment. The technical specification

⁵ Council Directive 67/548/EEC of 27 June 1967 on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. OJ 196, 16/08/1967 p. 0001 – 0098.

as agreed in the Annex I inclusion is not covered by the toxicological assessment, either. As the proposed technical specification could not be agreed on by the section on physical and chemical properties (refer to section 1), a critical area of concern was raised on this issue.

Low toxicity is observed when azoxystrobin is administered by the oral or dermal routes. An inhalation study using particles with a mass median aerodynamic diameter (MMAD) higher than 14 μ m presented a LC₅₀ of 4.7 mg/L air, while a study using smaller MMAD resulted in a LC₅₀ of 0.7 mg/L air. Accordingly, azoxystrobin is classified as T, R23, '**Toxic by inhalation'** under Annex I of Directive 67/548/EEC.

The target organs of azoxystrobin are the liver and common bile duct with increased liver weight, altered clinical chemistry profile and, at high dose levels, histopathological changes; reduced bodyweight gain is the most common finding. The relevant short-term and long-term NOAEL is around 20 mg/kg bw/day from the 90-day and 2-year rat studies, supported by the 1-year dog study. No genotoxicity is attributed to azoxystrobin administration *in vivo*; no oncogenic potential was found in rats or mice. Fertility and overall reproductive performance were not impaired; no teratogenicity was observed in either rats or rabbits, while reduced ossification was observed in rats at maternally toxic doses. No specific neurotoxic effects were found in acute and repeated-dose neurotoxicity studies.

Acute oral toxicity and bacterial gene mutation studies were submitted on metabolite R234886, found in plant residues and in groundwater up to 22 μ g/L according to environmental models, and on metabolite R230310 (*Z*-isomer of azoxystrobin). During the PRAPeR 71 meeting the experts confirmed that metabolite R234886 is not relevant in groundwater, and that the hazard assessment on azoxystrobin applies also to the plant metabolites, i.e. R234886, N1, N2, O2, O3, R401553, R405287 and R230310. No conclusion could be drawn on other metabolites found in animal matrices. After the experts' meeting, the rapporteur Member State provided further evaluation on the metabolites found in animal matrices in Addendum 2 to the Assessment Report (The United Kingdom, 2009b). Although this information has not been peer reviewed, EFSA notes there are indications that the reference values of the parent substance would apply also to metabolites found in goats (L1, L4 and L9), no conclusion could be drawn on their toxicological profile, although the rapporteur Member State considers them unlikely to be of toxicological significance at the levels found.

The acceptable daily intake (**ADI**) and the acceptable operator exposure level (**AOEL**) of azoxystrobin are set at 0.2 mg/kg bw/day, applying an assessment factor of 100. No acute reference dose (**ARfD**) is allocated. The estimated operator exposure is below the AOEL without using personal protective equipment (PPE) according to both the German and the UK POEM models. Low risk is anticipated for workers and bystanders.

3. Residues

Plant metabolism has been investigated in three plant groups; cereals (wheat), fruit crops (grapes) and oilseed/pulse crops (peanut), using ¹⁴C-azoxystrobin either labelled on the pyrimidyl, cyanophenyl or phenylacrylate moieties and considering foliar applications. The metabolism pattern was similar in all plant groups, the parent azoxystrobin being the major compound, accounting for 17-43% TRR in cereal grain and straw, 35-65% TRR in grapes, and 14-48% TRR in peanut hulls and hay. Azoxystrobin was however not detected in peanut nuts, where radioactivity was found to be mainly incorporated in fatty acids (up to 49% TRR). The other major identified metabolites were M28 (R401553), resulting from the cleavage of the ester link between the phenylacrylate and pyrimidyl ring, and metabolite R230310 (Z-isomer of azoxystrobin), both mostly below 10% TRR. Azoxystrobin follows a comparable pattern in rotational crops but with a more extensive metabolism, with more metabolites being formed, most of them as glucose or amino acid conjugates. Based on these studies the residue for monitoring and risk assessment was defined as azoxystrobin only. Sufficient supervised residue trials were provided to derive the MRLs for Brassicae, wheat and barley. Azoxystrobin and its Z-isomer (R230310) were shown to be stable up to 10 months and 2 years, in animal and plant

matrices, respectively, when stored frozen at *ca.* -18°C. No significant hydrolysis of azoxystrobin was observed following standard incubations at different pH and temperatures, and transfer factors were proposed for beans, barley and wheat processed commodities. No residues are expected in rotational crops when azoxystrobin is applied according to the representative GAPs.

Azoxystrobin was rapidly excreted in the metabolism studies performed on goats (2N dose) and poultry (8N dose). The transfer in tissues was limited, the TRRs in muscle, fat, milk and egg white being ≤ 0.02 mg/kg. Thus, characterisation of residues was only performed in goat liver and kidney, and in poultry liver and egg yolk, where the TRRs were in the range of 0.05 to 1.19 mg/kg. In these matrices, the metabolism was shown to be very extensive, more than 20 compounds being identified/characterised, each accounting mostly for less than 5% of the TRR. Some metabolites (M28, M20, L4...) were however observed in higher proportions in some matrices, depending on the ¹⁴C-label. The parent compound was less than 2% of the TRR, except in egg yolk (12% TRR for the cyanophenyl label). None of these compounds were considered as a sufficient marker for the residue in animal matrices, and the residue for monitoring and risk assessment was then defined by default as azoxystrobin only. However, the definition for risk assessment has to be considered provisional, pending additional information on the toxicological relevance of metabolites L1, L4 and L9. Considering the calculated animal burdens and the results of the feeding studies, no MRLs were proposed for poultry products and a global MRL of 0.01* mg/kg was set for the other products of animal origin.

The TMDI estimated using the EFSA PRIMo model rev.2 and the MRLs proposed for Brassicae and cereals is less than 2% of the ADI for all diets included in the model. However, an additional chronic exposure of *ca*. 5% of the ADI has to be considered as the result of the presence of the metabolite R234886 in groundwater up to 22 μ g/L. The acute exposure was not estimated, since the setting of an ARfD was considered not necessary for azoxystrobin.

4. Environmental fate and behaviour

In soil laboratory incubations under aerobic conditions in the dark, azoxystrobin exhibits moderate to high persistence, forming only one major (>10% applied radioactivity (AR)) soil metabolite, referred to as R234886. However, a data gap was set for detailed quantification of a group of unidentified, minor transformation products found in one soil incubation, to clarify whether this group contains any metabolite that would trigger further evaluations regarding groundwater contamination⁶. The rate of mineralisation to carbon dioxide varied between 1.8-27 % AR after 120 days, depending on the soil and the radiolabel position used. Formations of unextractable residues were a sink, accounting for 6.2-24.5 % AR after 120 days. Under anaerobic conditions, azoxystrobin exhibited similar degradation scheme as under aerobic conditions, forming no novel metabolites. However, in the study on photolysis in soil, two metabolites, R401553 and R402173, reached 5% AR or were formed even above this level at two consecutive time points. Both photolytic metabolites, as well as the metabolite R234886 were found in some field trials at significant levels (>10%). Moreover, metabolite R401553 was found to be minor, but was increasing at the study end of one soil incubation in the laboratory. Metabolite R401553 exhibited very low to low persistence, and metabolite R402173 exhibited low persistence in soil. Metabolite R234886 may be considered to exhibit moderate to high persistence in soil on the basis of the complete data set, considering single first-order (SFO) or biphasic degradation. Concerning the kinetics and the degradation end points to be used in the further evaluation for this metabolite, an extensive expert discussion was conducted (see Report of PRAReR 72 Experts' Meeting, Open point 4.2; EFSA, 2010).

⁶ Assessment for groundwater contamination is necessary for minor metabolites, which account for less than 10%, but more than 5% of the amount of the parent compound in at least two consecutive measurements during a soil incubation, or of which amount is still increasing at the end of the study, therefore it cannot be proved that the maximum formation is already reached (European Commission, 2003).

^{*} MRL is proposed at the limit of quantification (LOQ)

Dissipation of azoxystrobin was investigated in a number of field trials. After the evaluation of the designs of these studies against the relevant criteria outlined in FOCUS Kinetics (FOCUS, 2006), and after the normalization of the residue data from the accepted trials to FOCUS reference conditions ($20^{\circ}C$ and pF2 soil moisture content), altogether 13 degradation end points were obtained. In 10 trials, where the surface applications were not followed by soil incorporation, biphasic declines were observed. This was attributed to photolysis on the surface followed by microbiological degradation in the soil. Azoxystrobin exhibits low to medium mobility, while the metabolite R401553 exhibits high to medium mobility in soil. Metabolites R402173 and R234886 exhibited very high to medium mobility in soil, and there was an indication that the adsorption of these metabolites is pH dependent. Soil plateau concentration for long-term use in consecutive years and PECsoil for azoxystrobin were calculated based on the initial PECsoil of azoxystrobin.

In laboratory incubations in aerobic natural sediment water systems, azoxystrobin exhibited high persistence (SFO DT_{50} 180-234 days), forming the major metabolite R234886. The majority of azoxystrobin partitioned to sediment during the study, only a small percentage ($\leq 7.6\%$) was found in the water phase at the study end, on day 152. However, in the sediment, a significant amount (42-61%) of radioactivity was identified as azoxystrobin at the study end. Mineralisation to carbon dioxide accounted for 2.5-5.1 % AR, while residues not extracted from the sediment represented 5.9 - 6.7 % AR at the end of the study. In an outdoor pond study, azoxystrobin dissipated from the water column with a calculated DT_{50} of about 13 days. The residue of azoxystrobin in the sediment was continuously increasing in the first three weeks of the study. The necessary surface water and sediment exposure assessments (predicted environmental concentrations (PEC)) were appropriately carried out using the FOCUS (2001) step 1 and step 2 approach (version 1.1 of the steps 1-2 in FOCUS calculator) for azoxystrobin and its metabolites. Moreover, PEC values for surface water and sediment were calculated for azoxystrobin using FOCUS step 3 approach.

The necessary groundwater exposure assessments were appropriately carried out using FOCUS (2000) scenarios and models (PELMO 3.3.2 and PEARL $3.3.3^7$). The potential for groundwater exposure from the representative uses by azoxystrobin or the metabolites R401553 and R402173 above the parametric drinking water limit of 0.1 µg/L was concluded to be low in geoclimatic situations that are represented by the relevant FOCUS groundwater scenarios. The potential for groundwater exposure by the metabolite R234886 was concluded to be high over a wide range of geoclimatic conditions represented by the FOCUS groundwater scenarios.

Azoxystrobin has a low potential for volatilization with an estimated atmospheric half-life shorter than 2 days. Therefore, long-range transport through the atmosphere is not expected.

The PEC in soil, surface water, sediment and groundwater, as agreed by the peer review for the representative uses assessed, can be found in Appendix A of this conclusion.

5. Ecotoxicology

Azoxystrobin was discussed at the PRAPeR Expert Teleconference 25 on Ecotoxicology (4 November 2009). The environmental risk assessment of azoxystrobin was conducted according to the current guidance documents (see References). The analysis of the batches used in the ecotoxicological tests was not provided, therefore comparison of these batches with the proposed specification could not be assessed.

The toxicity studies indicated a low toxicity of azoxystrobin to birds and mammals, and the risk from the representative uses was assessed as low.

Based on the available data, azoxystrobin and its formulation were considered as very toxic to aquatic organisms. The relevant metabolites R234886, R401553 and R402173 were found to be less toxic than

⁷ Simulations correctly utilised the agreed Q10 of 2.58 and Walker equation coefficient of 0.7

the parent substance. As regards azoxystrobin toxicity, *Skeletonema costatum* ($E_bC_{50} = 0.098$ mg a.s./L was found to be the most sensitive species. The experts agreed to use the acute end point of $LC_{50} = 470 \ \mu g$ a.s./L (*Oncorhynchus mykiss*) in the acute risk assessment for fish (see Evaluation Table open point 5.5; EFSA, 2010). Low acute risk was identified from azoxystrobin to fish using the PECsw from FOCUS step 3 for all representative uses, except for the Brassicae, where the R3 and R4 scenarios breach the Annex VI trigger values. The long-term risk for fish was assessed as low. A data gap was identified by EFSA after the peer-review to refine the acute risk for fish resulting from the use on Brassicae.

The experts discussed the three different approaches proposed by the rapporteur Member State to refine the risk to aquatic invertebrates. First approach: using the acute/chronic end points to derive acute/chronic regulatory concentration according to the PPR panel opinion (EFSA, 2005). It was agreed that the range of species used are acceptable. By using the geometric mean, a regulatory concentration of 8.9 µg a.s./L was derived. Second approach: using the acute toxicity end point to derive species sensitive distributions (SSD) and a corresponding HC_5 and, in particular, the lower limit HC₅ (LLHC₅). The concentration derived from using this approach, 7.15 µg a.s./L, is very close to the concentration using the geometric mean. The expressed concern over this approach due to the limited dataset on which it was based and the fact that it is not a standard refinement step. Concerns were raised also over the introduction of a novel approach that had not so far been considered by Member States. Despite this, the experts concluded that it was a useful end point to consider along with the other lines of evidence. Third approach: using the mesocosm study conducted with azoxystrobin. It was agreed that the quality of this study was poor; in particular, because only one application was made, and there was a lack of chemical analysis over time. The experts agreed that each line of evidence was insufficient on its own to be used in the regulatory risk assessment. However, the experts considered that it was possible to use information from all lines to determine a regulatory acceptable concentration (RAC). Based on all of the above information, the experts concluded that after taking all lines of evidence into account, the RAC should be set at 3.3 µg a.s./L. It should be noted that in selecting this end point the RAC is lower than the NOEAEC of 10 μ g a.s./L, the lower limit of the HC₅ of 7.15 μ g a.s./L and the geometric mean of 8.9 μ g a.s./L, but still higher than the value based on the tier 1 assessment. The risk for aquatic invertebrates based on the use of the RAC was assessed as high when the PECsw FOCUS step 3 was used for some of the relevant scenarios for all the representative uses. The TERs estimated were not so far from the trigger values, indicating that with appropriate mitigation measures the risk for aquatic invertebrates can be addressed. A data gap was identified by EFSA after the peer-review to further refine the risk for aquatic invertebrates.

The risk from azoxystrobin to algae and aquatic plants was considered as low. The risk from the relevant metabolites to aquatic organisms was considered as low.

Hazard quotients (HQ) calculations based on the acute oral and contact toxicity of azoxystrobin indicated a low risk to bees. Laboratory studies on non-target arthropods were provided on the two standard species *Typhlodromus pyri* and *Aphidius rhopalosiphi*. Additional studies were provided with *Chrysoperla carnea, Orius laevigatus, Coccinella septempunctata, Pardosa spp.* and *Poecillus cupreus*, although not required. Based on the assessment of all the studies, the in-field and off-field risk for non-target arthropods was assessed as low.

The risk for earthworms was assessed as low from azoxystrobin and from the relevant metabolites R234886, R401553, R402173. The risk to other soil macro-organism (*Folsomia candida*) was assessed as low. No adverse effects were observed in the field litter bag study provided. Only one of the relevant metabolites in soil is persistent, R234886, however, the $DT_{50field}$ of the active substance is 180.7 days, and as the higher tier study last 181 days, it is likely that this metabolite was present, albeit not at the maximum concentration for part of the litter bag study.

The risk for soil micro-organisms from azoxystrobin and its relevant soil metabolites was assessed as low. The risk for non-target plants was assessed as low, and the risk for sewage treatment plants was considered as low.

6. Overview of the risk assessment of compounds listed in residue definitions for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
	Moderate to high persistence Single first order DT_{50} 35.2-248 days (20°C, pF2 soil moisture)	
Azoxystrobin	Field studies (EU): Single first order DT ₅₀ 121-262 days (n=3, normalized to 20°C and pF2 soil moisture, residues incorporated into the soils after the surface application); Slow phase of double first order in parallel DT ₅₀ 34.5-122 days (n=10, normalized to 20°C and pF2 soil moisture, surface application without incorporation)	The risk from azoxystrobin to earthworms was assessed as low.
R234886	Moderate to high persistence ^a Single first order/double first order in parallel DT ₅₀ 17.8-43.4 days, DT ₉₀ 59 days – too long to reliably estimate (20°C, pF2 soil moisture)	The risk from R234886 to earthworms was assessed as low.
R401553	Very low to low persistence Single first order DT ₅₀ 0.9-1.5 days (20°C, pF2 soil moisture)	The risk from R401553 to earthworms was assessed as low.
R402173	Low persistence Single first order DT ₅₀ 2.4-7.5 days (20°C, pF2 soil moisture)	The risk from R402173 to earthworms was assessed as low.

n: number of data

a: the class of high persistence is based on the assumption that the DT₅₀ for the soil incubations, where the degradation followed double first order in parallel kinetics, were about 300 days.

6.2. Ground water

Ground water assessment could not be finalized for unidentified, minor, soil transformation products (see data gap in section 4).

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity
Azoxystrobin	Medium to low mobility K _{Foc} 207-594 mL/g	No	Yes	Yes	Azoxystrobin is very toxic to aquatic organisms. The risk for aquatic organisms was assessed as high.
R234886	Very high to medium mobility K _{Foc} 21-490 mL/g	Yes (FOCUS); pending on the model (PELMO or PEARL) used: - trigger 0.1µg/L exceeded for 4 or 6 of 7 scenarios for Brassicae, 5 or 7 of 9 scenarios for winter cereals and 3 of 6 scenarios for spring cereals - trigger 0.75 µg/L exceeded for 4 or 5 of 7 scenarios for Brassicae, 4 or 6 of 9 scenarios for winter cereals and 2 or 3 of 6 scenarios for spring cereals - concentration of 10 µg/L exceeded for 2 or 3 of 7 scenarios for Brassicae and 1 of 9 or 6 scenarios for winter and spring cereals (PEARL)	No	No Rat, oral LD ₅₀ > 5000 mg/kg bw; Negative in an <i>in vitro</i> bacterial mutation test Covered by the toxicological assessment of azoxystrobin Reference values of azoxystrobin apply to this metabolite	R234886 is harmful to aquatic organisms. The risk for aquatic organisms was assessed as low.

R402173	Very high to medium mobility K _{Foc} 25-200 mL/g	No	No	No data, data not needed	R402173 is harmful to aquatic organisms. The risk for aquatic organisms was assessed as low
R401553	High to medium mobility K _{Foc} 66-500 mL/g	No	No	No Covered by the toxicological assessment of azoxystrobin Reference values of azoxystrobin apply to this metabolite	R401553 is harmful to aquatic organisms. The risk for aquatic organisms was assessed as low.

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
Azoxystrobin	Azoxystrobin is very toxic to aquatic organisms. The risk for aquatic organisms was assessed as high.
R234886	R234886 is harmful to aquatic organisms. The risk for aquatic organisms was assessed as low.
R402173	R402173 is harmful to aquatic organisms. The risk for aquatic organisms was assessed as low
R401553	R401553 is harmful to aquatic organisms. The risk for aquatic organisms was assessed as low.

6.4. Air

Compound (name and/or code)	Toxicology
Azoxystrobin	Rat, LC_{50} inhalation 0.7 mg/L air (MMAD <2 μ m)) – T; R23 "toxic by inhalation" (as in Annex I to Directive 67/548/EEC)
	Rat, LC_{50} inhalation > 4.7 mg/L air (MMAD >14 μ m)

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- QC data on the analysis of the technical material are required to support the technical material specification (relevant for all representative uses evaluated; submission date proposed by the notifier: during the written procedure the RMS has advised that data are available but could not be included in the assessment according to Commission Regulation (EC) No 737/2007; see section 1).
- Adequately validated method for monitoring of azoxystrobin residues in body fluids and tissues (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see sections 1 and 2).
- Toxicological relevance of the metabolites L1, L4 and L9 observed in the goat metabolism study but not in rats has to be addressed (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see sections 2 and 3).
- Quantification and, if needed, identification of the unidentified, minor, soil transformation products formed in unspecified quantity (but less than 10 % AR) (relevant for all representative uses evaluated; submission date proposed by the notifier: during the written procedure the RMS has indicated that information is available but could not be included in the assessment according to Commission Regulation (EC) No 737/2007; see section 4).
- Analysis of the batches used in the ecotoxicological tests should be provided (relevant for all representative uses evaluated; data gap identified by EFSA after the peer review; submission data proposed by the notifier: unknown; see section 5).
- The acute risk from azoxystrobin to fish, and the risk assessment for aquatic invertebrates should be further refined (relevant for Brassicae (fish) and for all representative uses (aquatic invertebrates); submission data proposed by the notifier: unknown; see section 5).

PARTICULAR CONDITIONS PROPOSED TO BE TAKEN INTO ACCOUNT TO MANAGE THE RISK(S) IDENTIFIED

• Risk mitigation measures should be required to refine the risk to fish arising from the use of azoxystrobin on Brassicae and for the aquatic invertebrates for all representative uses (see section 5).

ISSUES THAT COULD NOT BE FINALISED

- The technical material specification could not be finalised, as appropriate levels of some impurities could not be agreed on during the peer review (see section 1).
- The residue definition for risk assessment for animal matrices is provisional, pending additional information on the toxicological relevance of metabolites L1, L4 and L9 (see section 3).
- There is a data gap for identification/quantification of the unidentified, minor soil transformation products. Therefore there is no assessment for groundwater contamination of any potentially formed minor soil transformation products that would trigger further evaluation (see section 4).
- The risk assessment for fish and aquatic invertebrates could not be finalised for Brassicae and for all representative uses, respectively, since no PECsw FOCUS step 4 were provided (see section 5).

CRITICAL AREAS OF CONCERN

- The technical specification as agreed in the Annex I inclusion is not covered by the toxicological assessment. From a toxicological point of view, it should comply with the rapporteur Member State's proposal from May 2009; the proposal made by the notifier for the Annex I renewal procedure, which reduces the levels of a number of impurities compared to the specification agreed for Annex I inclusion, is also not covered by the toxicological assessment with respect to two impurities. None of these new proposals could be agreed on by the section on the identity, physical, chemical and technical properties (see sections 1 and 2).
- The potential for groundwater exposure by the metabolite of azoxystrobin R234886 above the concentration of 10 µg/L is predicted to be high over a wide range of geoclimatic conditions represented by the FOCUS groundwater scenarios. In case of Brassicae, 2 (FOCUS PELMO) or 3 (FOCUS PEARL) out of 7 scenarios; in case of spring cereals, 1 out of 6 scenarios; in case of winter cereals, 1 out of 9 scenarios were identified, where the concentration of 10 µg/L was exceeded by this non-relevant metabolite (in case of cereals all with FOCUS PEARL).

REFERENCES

- EFSA (European Food Safety Authority), 2005. Opinion of the Scientific Panel on Plant Health, Plant Protection Products and their Residues (PPR) on a request from EFSA related to the assessment of the acute and chronic risk to aquatic organisms with regard to the possibility of lowering the uncertainty factor if additional species were tested. The EFSA Journal (2005) 301, 1-45.
- EFSA (European Food Safety Authority), 2010. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance azoxystrobin. EFSA Journal 2010; 8(4):1542.
- European Commission, 2002a. Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002 rev.2 final, 17 October 2002.
- European Commission, 2002b. Guidance Document on Aquatic Ecotoxicology Under Council Directive 91/414/EEC. SANCO/3268/2001 rev 4 (final), 17 October 2002.
- European Commission, 2002c. Guidance Document on Risk Assessment for Birds and Mammals Under Council Directive 91/414/EEC. SANCO/4145/2000.
- European Commission, 2003. Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000 rev.10, 25 February 2003.
- FOCUS, 2000. "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002.
- FOCUS, 2001. "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.
- FOCUS, 2006. "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration" Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp.
- SETAC (Society of Environmental Toxicology and Chemistry), 2001. Guidance Document on Regulatory Testing and Risk Assessment procedures for Plant Protection Products with Non-Target Arthropods. ESCORT 2.
- The United Kingdom, 2009a. Assessment Report on the active substance azoxystrobin prepared by the rapporteur Member State the United Kingdom in consultation with the Czech Republic in the framework of Commission Regulation (EC) No 737/2007, May 2009.
- The United Kingdom, 2009b. Final Addendum to Assessment Report on azoxystrobin, compiled by EFSA, December 2009.

APPENDICES

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name)	Azoxystrobin							
Function (eg. fungicide)	Fungicide							
Rapporteur Member State	UK							
Co-rapporteur Member State	Czech Republic							
Identity (OECD data point IIA 1)								
Chemical name (IUPAC)	methyl (<i>E</i>)-2-{2[6-(2-cyanophenoxy)pyrimidin-4- yloxy]phenyl}-3-methoxyacrylate							
Chemical name (CA)	methyl (<i>E</i>)-2-{2[6-(2-cyanophenoxy)-4- pyrimidinyl]oxy}- α -(methoxymethylene)benzeneacetate							
CIPAC No	571							
CAS No	131860-33-8							
EC No (EINECS or ELINCS)	Not allocated							
FAO Specification (including year of	571/TC (August 2009)							
publication)	min. 965 g/kg							
Minimum purity of the active substance as manufactured (g/kg)	965 g/kg							
Identity of relevant impurities (of toxicological, environmental and/or other significance) in the active substance as manufactured (g/kg)	Toluene (assessment of maximum level not finalised)							
Molecular formula	C ₂₂ H ₁₇ N ₃ O ₅							
Molecular mass	403.4							
Structural formula	CN OCH ₃							

Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡	116°C (purity: 990 g/kg)
Boiling point (state purity) ‡	Above 360°C
Temperature of decomposition (state purity)	Approximately 345°C at atmospheric pressure
Appearance (state purity) ‡	White crystalline powder, tech. as (962 g/kg) pale brown crystalline powder.
Vapour pressure (state temperature, state purity) ‡	1.1 x 10 ⁻¹⁰ Pa at 20°C (purity: 990 g/kg)
Henry's law constant ‡	$7.4 \text{ x } 10^{-9} \text{ Pa m}^3 \text{ mol}^{-1}$
Solubility in water (state temperature, state	pH 5.2: 6.7 mg/L at 20°C (purity: 962 g/kg)
	pH 7.0: 6.7 mg/L at 20°C (purity: 962 g/kg)
	pH 9.2: 5.9 mg/L at 20°C (purity: 962 g/kg)
Solubility in organic solvents ‡	Solubility at 20°C in g/L (purity: 962 g/kg)
(state temperature, state purity)	Hexane: 0.057
	Octan-1-ol: 1.4
	Methanol: 20
	Toluene: 55
	Acetone: 86
	Ethyl acetate: 130
	Acetonitrile: 340
	Dichloromethane: 400
Surface tension ‡ (state concentration and temperature, state purity)	71.8 mN/m (purity: 962 g/kg) at 20 °C. 90% saturated aqueous solution of technical grade active substance.
Partition co-efficient ‡ (state temperature, pH and purity)	log $P_{O/W} = 2.5$ at 20°C (without pH dependence)
Dissociation constant (state purity) ‡	$pKa_1 = <0$ (neither acidic nor basic properties)
UV/VIS absorption (max.) incl. ε ‡ (state purity, pH)	Pure active substance: 990 g/kg, pH: not considered or necessary as active does not dissociate. 202.6 nm: 60700 M ⁻¹ ·cm ⁻¹ 242.7 nm: 17800 M ⁻¹ ·cm ⁻¹ 295 nm: 302 M ⁻¹ ·cm ⁻¹
Flammability ‡ (state purity)	Not classified as highly flammable in terms of its burning characteristics and does not self-ignite.
Explosive properties ‡ (state purity)	Not expected to be explosive given an analysis of the bonding groups present.
Oxidising properties ‡ (state purity)	Not an oxidising substance

Summary of representative uses evaluated (*azoxystrobin*)*

Crop and/	Member		F	Pests or	Form	ulation		Ap	plication		Application rate per treatment			PHI	Remarks:
or situation	State or	Product	G	Group of pests	Туре	Conc.	method	growth	number	interval	kg as/hL	water	kg as/ha	(days)	
	Country	name	or	controlled		of as	kind	stage &	min	between		L/ha			
			Ι			g/L		season	max	applications	min	min	min		
(a)			(b)	(c)	(d-f)	(i)	(f-h)	(j)	(k)	(11111)	max	max	max	(1)	(m)

Broccoli	EU	'Amistar' / 'Ortiva'	F	Albugo candida, Alternaria brassicae, Mycosphaerella brassicicola, Peronospora parasitica	SC	250	Foliar spray	BBCH35 BBCH39	1-2	12	0.042 – 0.125	200- 600	0.250	14	[1]
Cauliflower	EU	'Amistar' / 'Ortiva'	F	Albugo candida, Alternaria brassicae, Mycosphaerella brassicicola, Peronospora parasitica	SC	250	Foliar spray	BBCH35 - BBCH39	1-2	12	0.042 – 0.125	200- 600	0.250	14	[1]
Brussels sprouts	N EU	'Amistar' / 'Ortiva'	F	Albugo candida, Alternaria brassicae, Mycosphaerella brassicicola, Peronospora parasitica	SC	250	Foliar spray	BBCH35 - BBCH39	1-2	12	0.042 – 0.125	200- 600	0.250	14	[1]
Kale	EU	'Amistar' / 'Ortiva'	F	Albugo candida, Alternaria brassicae, Mycosphaerella brassicicola, Peronospora parasitica	SC	250	Foliar spray	BBCH35 - BBCH39	1-2	12	0.042 – 0.125	200- 600	0.250	14	[1]

Crop and/	Member		F	Pests or	Form	ulation		Ap	plication		Application rate per treatment			PHI	Remarks:
or situation	State or	Product	G	Group of pests	Туре	Conc.	method	growth	number	interval	kg as/hL	water	kg as/ha	(days)	
	Country	name	or	controlled		of as	kind	stage &	min	between	_	L/ha	_		
			Ι			g/L		season	max	applications	min	min	min		
(a)			(b)	(c)	(d-f)	(i)	(f-h)	(j)	(k)	(min)	max	max	max	(1)	(m)

Barley	EU	'Amistar' / 'Ortiva'	F	Pyrenophora teres Puccinia hordei Rhynchosporium secalis Gaeumannomyces graminis var. Tritici Barley spotting	SC	250	Foliar spray	BBCH31 - BBCH59	1-2	14	0.083 – 0.250	100- 300	0.250	35*	*Timing of applications determined primarily by growth stage;1 st no later than BBCH39, 2 nd no later than BBCH59. [1]
Wheat	EU	'Amistar' / 'Ortiva'	F	Septoria tritici Septoria nodorum Puccinia striiformis Puccinia recondita Gaeumannomyces graminis var. tritici	SC	250	Foliar spray	BBCH31 - BBCH69	1-2	14	0.083 – 0.250	100- 300	0.250	35**	**Timing of applications determined primarily by growth stage; 1 st application no later than BBCH39, 2 nd application no later than BBCH69 [1]

[1] There is no agreed technical specification covered by the toxicological risk assessment

- (a) For crops, the EU and Codex classifications (both) should be used; where
- relevant, the use situation should be described (eg. fumigation of a structure)
- (b) Outdoor or field use (F), glasshouse application (G) or indoor application (I)
- (c) eg. biting and suckling insects, soil born insects, foliar fungi, weeds

(d) eg. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989

(f) All abbreviations used must be explained

(h) Kind, *eg.* overall, broadcast, aerial spraying, row, individual plant, between the plant - type of equipment used must be indicated

(i) g/kg or g/l

(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of application possible under practical conditions of use

- (l) PHI minimum pre-harvest interval
- (m) Remarks may include: Extent of use/economic importance/restrictions

(g) Method, eg. high volume spraying, low volume spraying, spreading, dusting, drench

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	GC, CP-Sil 13 CB fused silica capillary column, FID, evaluation by internal standard.
Impurities in technical as (analytical technique)	See Document J HPLC, external standard. Hichrom RPB column with UV detection.
	GC, split injection on a CP-Sil 13CB capillary column, FID
	Inorganic impurities, titrimetry (method SB-21/1)
Plant protection product (analytical technique)	GC, CP-Sil 13 CB fused silica capillary column, FID, evaluation by internal standard

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin	Azoxystrobin	
Food of animal origin	Azoxystrobin	
Soil	Azoxystrobin	
Water surface	Azoxystrobin	
drinking/ground	Azoxystrobin	
Air	Azoxystrobin	
Body fluids and tissues	Azoxystrobin	

Monitoring/Enforcement methods

Food/feed of plant origin (analytical te and LOQ for methods for mo purposes)	hnique Azoxystrobin and R itoring LC-MS/MS	230310 (Z-isomer)
	LOQs 0.01 mg/kg (straw) for each	cabbage, cereals(grain and
	ILV (LOQ 0.01 mg maize, lettuce, suga	/kg, cabbage, kale, potato, r beet)
	DFG S19 multi-met other dry crops' (gr acid content' (grape water content (wine	hod is applicable to cereals and ain and straw), 'fruits with high es) and commodities with high e)
	LOQs: 0.02 mg/kg grapes); 10 μg/l (wi	(straw); 0.01 mg/kg (grain, ne)
	DFG S19 for plant appropriate for bras not available.	matrices of high water content sica vegetable commodities is

Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	Azoxystrobin and R230310 (Z-isomer) GC-NPD LOQs 0.001 mg/kg (milk), 0.01 mg/kg (liver, muscle, fat, eggs) for each compound
Soil (analytical technique and LOQ)	Azoxystrobin
	HPLC-MS/MS, HPLC-UV and GC-MSD LOQ 0.02 mg/kg (0.01 mg/kg for R401553, R402173)
Water (analytical technique and LOQ)	Azoxystrobin GC-MSD, LOQ 0.1 μg/L
Air (analytical technique and LOQ)	Azoxystrobin GC-MSD, LOQ 3 μg/m ³
Body fluids and tissues (analytical technique and LOQ)	Azoxystrobin Open (data gap)

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

Active substance

RMS/peer review proposal
None

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	Dose dependent ~75 to 80 % based on biliary (> 70 %) and urinary (2-7 %) excretion. No correction of the AOEL is necessary for oral absorption.
Distribution ‡	Highest values measured in the kidneys followed by liver
Potential for accumulation ‡	No evidence of accumulation
Rate and extent of excretion ‡	Rapidly eliminated with the bile being the main route
Metabolism in animals ‡	Well metabolised (at least 18 metabolites)
Toxicologically relevant compounds ‡ (animals and plants)	Azoxystrobin
Toxicologically relevant compounds ‡ (environment)	Azoxystrobin

Acute toxicity (Annex IIA, point 5.2)

Rat LD₅₀ oral ‡

Rat LD₅₀ dermal ‡

Rat LC₅₀ inhalation ‡

Skin irritation ‡ Eye irritation ‡ Skin sensitisation (guinea pig) ‡

> 5000 mg/kg bw	-
> 2000 mg/kg bw	-
$0.7 \text{ mg/L air (MMAD^8 < 2 } \mu m))$	R23
$>$ 4.7 mg/L air (MMAD >14 μ m)	
Slight-irritant	-
Slight irritant	-
Not a sensitiser (Magnusson and Kligman test)	-

Short term toxicity (Annex IIA, point 5.3)

arget / critical effect ‡ Liver, reduced body weight gain (ra common bile duct (male rat)		dogs),
Relevant oral NOAEL ‡	21 mg/kg bw/day (90-day rat) 50 mg/kg bw/day (90-day dog) 25 mg/kg bw/day (1-year dog)	
Relevant dermal NOAEL ‡	1000 mg/kg bw/day (21-day dermal, rat, systemic)	
Relevant inhalation NOAEL ‡	No data, not applicable	

-

⁸ Mass Median Aerodynamic Diameter

Genotoxicity ‡ (Annex IIA, point 5.4)

Weak clastogenic effects seen *in vitro*; Not genotoxic *in vivo*

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡

Relevant NOAEL ‡

Carcinogenicity ‡

Liver, common bile	duct,	reduced	body	weight
gain.				
18 mg/kg bw/day (2-y	ear fee	eding rat)		
37 mg/kg bw/day (2-y	ear mo	ouse)		
No carcinogenic poter	ntial			

Reproductive toxicity (Annex IIA, point	5.6)
Reproduction toxicity	

Reproduction target / critical effect ‡

Relevant parental NOAEL ‡

Relevant reproductive NOAEL ‡ Relevant offspring NOAEL ‡

Developmental toxicity

Developmental target / critical effect ‡

Relevant maternal NOAEL ‡

Relevant developmental NOAEL ‡

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity ‡

Repeated neurotoxicity ‡

Delayed neurotoxicity ‡

Minor reductions in pup and parental body weight gain. No effects on reproduction.	
32 mg/kg bw/day	
170 mg/kg bw/day	
32 mg/kg bw/day	

Reduced ossification (rat); at maternally toxic (reduced body weight gain) dosages.	
No developmental effect in rabbits	
Not teratogenic (rat and rabbit)	
25 mg/kg bw/day (rat)	
150 mg/kg bw/day (rabbit)	

150 mg/kg bw/day (rabbit)25 mg/kg bw/day (rat)500 mg/kg bw/day (rabbit)

No specific neurotoxic effects up to 2000 mg/kg bw NOAEL for general toxicity < 200 mg/kg bw	
No specific neurotoxic effects up to 161 mg/kg bw/day (90-day neurotoxicity study) NOAEL for general toxicity: 39 mg/kg bw/day	
No data – not required	

Mechanism studies ‡	No data – not required
Studies performed on metabolites or impurities ‡	$\frac{R234886}{LD_{50} \text{ in rats}} - \text{ negative in an Ames test; acute oral}$ $\frac{R234886}{LD_{50} \text{ in rats}} > 5000 \text{ mg/kg bw}$ Not a relevant groundwater metabolite
	<u>z-isomer (R230310)</u> – oral LD_{50} in mice > 5000 mg/kg bw, negative in Ames test
Medical data ‡ (Annex IIA, point 5.9)	
	No consistent evidence of adverse effects on production plant workers, users of azoxystrobin based products or members of the public

Other toxicological studies (Annex IIA, point 5.8)

Summary (Annex IIA, point 5.10) Value Study Safety factor ADI ‡ 0.2 mg/kg bw/day 100 2-year rat AOEL ‡ 0.2 mg/kg bw/day 90-day rat 100 supported by overall short term dog ARfD ‡ Not necessary

Dermal absorption ‡ (Annex IIIA, point 7.3)

0.3 % for the concentrate (250 g/L SC formulation) based on *in vivo* rat study, and 0.5 % for the 1:600 spray dilution based on an *in vivo* rat study and *in vitro* data in rat and human skin.

Exposure scenarios (Annex IIIA, point 7.2)	
Operator	Exposure estimates predict that the proposed uses of 'Amistar' (application rate of 0.250 kg azoxystrobin/ha) will result in levels of systemic exposure to azoxystrobin equivalent to: <u>Tractor mounted or trailed field crop sprayers</u> Without PPE: 0.7 % of the AOEL (German model) Without PPE: 7 % of the AOEL (UK POEM)
Workers	Estimates using the EUROPOEM re-entry exposure model predict that levels of systemic exposure to azoxystrobin for unprotected workers will be equivalent to 0.63 % of the AOEL when inspecting treated crops, and 1.25 % of the AOEL during hand-harvesting activities.

Bystanders

Using published surrogate data, bystander exposure to azoxystrobin vapour is estimated to be equivalent to 0.3 % of the AOEL.

Based on a simulated exposure study, bystander exposure to spray drift containing azoxystrobin is estimated to be equivalent to 0.14 % of the AOEL.

Using published drift data and US EPA exposure data, children's exposure to spray drift fallout is estimated to be equivalent to 0.05 % of the AOEL.

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Т

RMS/peer review proposal based on Annex I of Directive 67/548/EEC merits further discussion at ECHA based on low probability of generating respirable particles under normal conditions of use.

Substance classified (azoxystrobin)

R23 "Toxic by inhalation"

"Toxic"

Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Cereals(wheat),Fruit crops(grapes),Oilseeds/Pulses(peanuts)
Rotational crops	Wheat, radish, lettuce
Metabolism in rotational crops similar to metabolism in primary crops?	Yes
Processed commodities	Azoxystrobin (no significant degradation observed under standard hydrolysis conditions)
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes
Plant residue definition for monitoring	Azoxystrobin
Plant residue definition for risk assessment	Azoxystrobin
Conversion factor (monitoring to risk assessment)	None

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Goats, hens
Azoxystrobin
Azoxystrobin (provisional)
None
Yes
No

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

Field trials on wheat, millet, radish, turnip, beetroot, mustard greens and leaf lettuce: Residues <0.01 mg/kg (LOQ) in edible part of commodities. In non-edible commodities (animal feed) the highest residues were seen in cereals: up to 0.05 mg/kg in forage, 0.03 mg/kg in hay and 0.04 mg/kg in straw.

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Azoxystrobin and R230310 stable for up to two years when stored at approximately -18° C in: grapes, wine, apples, orange oil, orange juice, orange pulp, bananas, peaches, tomatoes (juice and paste), cucumbers, lettuce, carrot root, cereal straw, cereal grain, soybean meal, oilseed rape, pecans and peanut (oil and nut meat). Azoxystrobin stable for up to ten months when stored at approximately -18° C in animal tissues,

eggs and milk.

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

	Ruminant:	Poultry:	Pig:
	Conditions of requi	rement of feeding	studies
Expected intakes by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)	10.24/12.37 mg/kg DM (dairy/beef cattle)	1.36 mg/kg DM	3.84 mg/kg DM
Potential for accumulation (yes/no):	No	No	No
Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues	No	No	No
	Feeding studies: (H	Feeding rate up to	45N in poultry
	study and up to 24N	I in the cattle stud	y)
	Residue levels in m	atrices : max (mg/	/kg)
Muscle	< 0.01	<0.01 mg/kg	Not addressed
	(20N dose)	(45N dose)	
Liver	0.01	<0.01 mg/kg	Not addressed
	(2N dose)	(45N dose)	
Kidney	0.01	<0.01 mg/kg	Not addressed
-	(6N dose)	(45N dose)	
Fat	0.02 mg/kg	<0.01 mg/kg	Not addressed
I ut	(6N dose)	(45N dose)	
Milk	0.004 mg/kg		
	(2N dose)		
Eggs		<0.01 mg/kg (45N dose)	

Сгор	Northern/ Southern field or glasshouse,	Trials results relevant to the representative uses (a)	Recommendation/com	ments	MRL estimated from trials according to representative uses	HR (c)	STMR (b)
Cauliflower	N EU	2x <0.01, 0.01, 0.02, 0.03, 0.05, 0.13, 0.14	$R_{max} = 0.22$ $R_{ber} = 0.22$	MRL based on	1.0	0.23	0.03
Cauiiilowei	S EU	2x <0.01, 0.03, 0.23	$R_{max} = 0.62$ $R_{ber} = 0.36$	Southern trials	1.0	0.23	0.05
Dracali	N EU	<0.01, 0.01, 0.04, 0.09	$R_{max} = 0.23$ $R_{ber} = 0.16$	MRL based on	2.0	0.58	0.08
Droccoll	S EU	2x 0.04, 0.11, 0.58,	$R_{max} = 1.53$ $R_{ber} = 0.93$	Southern trials	2.0	0.38	0.00
Wala	N EU	0.08, 0.30, 0.31, 0.67, 1.4, 1.6, 1.7, 3.5	$R_{max} = 4.79$ $R_{ber} = 3.35$	MRL based on	5.0	25	1.04
Kale	S EU	0.12, 0.15, 0.32, 1.3	$R_{max} = 3.35$ $R_{ber} = 2.11$	Northern trials	5.0	5.5	1.04
Brussels	N EU	3x 0.02, 0.03, 3 x 0.04, 0.05	$R_{max} = 0.07$ $R_{ber} = 0.08$	MRL based on	0.5	0.16	0.06
sprout	S EU	0.03, 0.05, 0.06, 0.16	$R_{max} = 0.37$ $R_{ber} = 0.27$	Southern trials	0.5	0.10	0.00
Dowley	N EU	<u>Grain</u> : <0.01, 0.01, 0.02, 2x 0.04, 0.08, 0.20, 0.43 <u>Straw</u> : 0.11, 0.39, 0.48, 0.91, 1.3, 1.5, 2.7, 5.1,	$R_{max} = 0.57$ $R_{ber} = 0.37$ (grain)	MRL based on	1.0	0.43	0.10
Багіеу	S EU	<u>Grain</u> : 0.01, 0.03, 0.04, 0.08, 2 x 0.10, 0.11, 0.13, 0.28 <u>Straw</u> : 0.65, 1.2, 1.3, 2x 2.3, 2.5, 2.9, 4.8, 5.5	$R_{max} = 0.34$ $R_{ber} = 0.24$ (grain)	Northern trials	1.0	(5.5 straw)	0.10
Wheat	N EU	<u>Grain</u> : 3 x <0.01, 0.01, 2 x 0.04, 0.07, 0.09, 0.23 <u>Straw</u> : 0.34, 0.58, 0.65, 0.75, 0.82, 1.5, 2x 1.6, 2.0	$R_{max} = 0.27$ $R_{ber} = 0.16$ (grain)	MRL based on	0.3	0.23	0.04
wneat	S EU	<u>Grain</u> : 3 x <0.01, 0.01, 0.02, 0.03, 2 x 0.04, 0.14 Straw: 1.2, 1.6, 1.9, 2.0, 3.2, 2x 3.5, 3.8, 6.2	$R_{max} = 0.16$ $R_{ber} = 0.08$ (grain)	Northern trials	0.5	(6.2 straw)	0.04

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

(a) Numbers of trials in which particular residue levels were reported e.g. 3 x <0.01, 1 x 0.01, 6 x 0.02, 1 x 0.04, 1 x 0.08, 2 x 0.1, 2 x 0.15, 1 x 0.17

(b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the representative use

(c) Highest residue

ADI	0.2 mg/kg/day
TMDI (% ADI) according to EFSA PRIMo model rev.2	<2% ADI for all diets included in the PRIMo model.
	Additional chronic exposure of <i>ca.</i> 5% ADI has to be considered, as the result of the presence of the metabolite R234886 in groundwater (up to 22 μ g/L).
NEDI (UK diet) (% ADI)	
NEDI (EU diets) (% ADI)	
Factors included in IEDI and NEDI	None
ARfD	Not required
IESTI (% ARfD)	Not relevant
NESTI (% ARfD) according to national large portion consumption data	Not relevant
Factors included in IESTI and NESTI	Not required

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Bean processing studies were evaluated to support uses on cauliflower, broccoli, kale (leafy brassicas) and Brussels sprouts.

Crop / processed crop	Number of studies	Transfer factor	% Transference*
Beans with pods \rightarrow tips	3	1.6	
Beans with pods \rightarrow trimmed beans	3	0.41	
Beans with pods \rightarrow blanched beans	3	<0.3	
Beans with pods \rightarrow canned beans	3	0.42	
Beans with pods \rightarrow cooked beans	3	<0.29	
Barley grain \rightarrow cleaned grain	1	0.8	
Barley grain \rightarrow malt	4	< 0.19	
Barley grain \rightarrow malt sprouts	1	0.4	
Barley grain \rightarrow spent grain	3	0.61	
Barley grain \rightarrow flocs	1	0.6	
Barley grain \rightarrow wort	2	< 0.35	
Barley grain \rightarrow spent yeast	3	0.31	
Barley grain \rightarrow young beer	2	< 0.35	
Barley grain \rightarrow beer	4	< 0.23	
Barley grain \rightarrow abrasion dust	4	3.25	
Barley grain \rightarrow pot barley	4	< 0.25	
Wheat \rightarrow cleaned grain	2	0.42	
Wheat \rightarrow offal/screenings	2	12.4	
Wheat \rightarrow bran	4	1.67	
Wheat \rightarrow flour type 550	4	0.45	
Wheat \rightarrow wholemeal flour	4	0.68	

Crop / processed crop	Number of studies	Transfer factor	% Transference*
Wheat \rightarrow bread type 550	2	0.57	
Wholemeal bread	4	0.51	
Wheat germ	2	0.30	

*Calculated on the basis of distribution in the different portions, parts, or products as determined through balance studies

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

- Plant products

Flowering brassica	
Cauliflower	1 mg/kg
Broccoli	2 mg/kg
Leafy brassica	
Kale	5 mg/kg
Head brassica	
Brussels sprouts	0.5 mg/kg
Cereals	
Barley (grain)	1 mg/kg
Wheat (grain)	0.3 mg/kg

- Animal products

All animal products (Except poultry products)

0.01* mg/kg

*MRL is set at the level of LOQ.

Environmental fate and behaviour

Koute of degradation (acrobic) in son (Annex	11A, point 7.1.1.1.1)
Mineralization after 100 days ‡	21.4-27.0 % after 120 d, (¹⁴ C-Cyanophenyl-label) 1.8-19.0 % after 120 d, (¹⁴ C-Pyrimidinyl-label) 1.9-26.0 % after 120 d,
Non-extractable residues after 100 days ‡	(¹⁴ C-Phenylacrylate-label) 23.5-24.5 % after 120 d, (¹⁴ C-Cyanophenyl-label) 16.5-22.0 % after 120 d, (¹⁴ C-Pyrimidinyl-label)
	6.2-19.3 % after 120 d, (¹⁴ C-Phenylacrylate-label)
Metabolites requiring further consideration ‡ - name and/or code, % of applied (range and maximum)	(E)-2-(2-[6-cyanophenoxy)-pyrimidin-4- yloxyl]-phenyl)-3-methoxyacrylic acid (metabolite I, R234886), 28.8% after 360 days

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1.1)

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡						
Mineralization after 100 days	0.3-4.7 % after 120 d, (¹⁴ C-Cyanophenyl-label) 2.3-2.7 % after 120 d, (¹⁴ C-Pyrimidinyl-label)					
	0.0-3.8 % after 120 d, (¹⁴ C-Phenylacrylate-label)					
Non-extractable residues after 100 days	3.4-15.3 % after 120 d, (¹⁴ C-Cyanophenyl-label) 5.2-9.6 % after 120 d, (¹⁴ C-Pyrimidinyl-label)					
	6.2-9.0 % after 120 d, (¹⁴ C-Phenylacrylate-label)					
Metabolites that may require further consideration for risk assessment - name	(E)-2-(2-[6-cyanophenoxy)-pyrimidin-4- yloxyl]-phenyl)-3-methoxyacrylic acid					
and/or code, % of applied (range and maximum)	(metabolite I, R234886), 67.7% after 181 days.					
Soil photolysis ‡						
Metabolites that may require further	Greater than 5% at 2 consecutive time points;					
and/or code, % of applied (range and maximum)	R401553 (Compound 28) - 5.0 % (day 9.8) – 5.7 % (day 31.3) - 14 C-pyrimidinyl-label.					
	R402173 (Compound 30) – 5.4% (day 9.8) – 7.6% (day 31.3) - C-pyrimidinyl label.					

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies **‡**

Parent	Aerol	Aerobic conditions								
	X ⁹	pН	t. °C / %	$DT_{50} / DT_{90} (d)$	DT ₅₀ (d)	St.	Method of			
		$(H_2 0)$	MWHC		20°C	(chi ²)	calculation			
					pF2/10kPa					
18 Acres		6.4	20 °C / 40 %	56.4/187	35.2	3.70	SFO			
(sandy clay loam)			MWHC							
(Tummon, 1995)										
East Anglia		7.9	20 °C / 40 %	66.9/222	57.2	5.34	SFO			
(sand)			MWHC							
Wisborough		5.9	20 °C / 40 %	94.1/313	54.1	5.60	SFO			
Green			MWHC							
(silty clay loam)										
18 Acres		7	75% 1/3 bar	87.0/289	65.2	2.06	SFO			
(sandy clay loam)			moisture							
(Warinton, 1996)			20 °C							
Hyde Farm		7	75% 1/3 bar	72.8/242	48.5	7.10	SFO			
(sandy clay loam)			moisture							
			20 °C							
Visalia		8.4	75% 1/3 bar	141.6/470	79.9	2.97	SFO			
(sandy loam)			moisture							
			20 °C							
Derbyshire		7.5	Field capacity	118.4/393	118.4	4.84	SFO			
(clay loam)			20 °C							
Holland		8.2	Field capacity	153.4/510	153.4	1.92	SFO			
(sandy loam)			20 °C							
Lincolnshire		7.4	Field capacity	248/824	248	7.5	SFO			
(sandy loam)			20°C							
Geometric mean				109.4/363.3 ^a	84.5 ^a					

^a = True geometric mean (geometric mean of 18 Acres soils taken first).

R234886	Aer	Aerobic conditions							
Soil type	X^2	pН	t. °C / %	DT ₅₀ / DT ₉₀	f. f.	$DT_{50}(d)$	St.	Method of	
			MWHC	(d)	k _{dp} /k _f	20°C	(chi ²	calculation	
						pF2/10kPa)		
Frensham		6.6	20°C/40%	45.2/2136 ^(d)	- ^(C)	30.4	3.9	DFOP	
(sandy loam)			MWHC						
Wisborough		6.4	20°C/40%	36.7/2124 ^(e)	- ^(C)	21.2	4.3	DFOP	
Green			MWHC						
(silty clay loam)									
East Anglia		7.9	20°C/40%	56.5/	- ^(C)	43.4	3.3	SFO	
(loamy sand)			MWHC	188					
Hyde Farm		7.0	20°C/	31.8/	0.9716	21.2	12.3	SFO	
(sandy clay loam)			75% 1/3	105.6					
			bar						
18 Acres		7.0	20°C/	23.7/	0.7764	17.8	5.9	SFO	
(sandy clay loam)			75% 1/3	78.8					
			bar						

 X^{2} This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

Peer Review of the pesticide risk assessment of the active substance azoxystrobin

Geometric mean	37.1/371.7	0.874	25.4 ^(b)	

 $^{(b)}$ = A default slow phase DFOP DT₅₀ of 1000 days for the Frensham and Wisborough Green soils was used to calculate a geometric mean normalised DT₅₀ of 110.4 days for use in the groundwater modelling.

 $^{(C)}$ = R234886 applied as parent therefore no formation fractions

^(d) = Additional DFOP parameters for the Frensham soil are as follows: $k_1 = 0.0464462 d^{-1}$,

 $k_2 = 0.0007 d^{-1}$, g = 0.554106^(e) = Additional DFOP parameters for the Wisborough Green soil are as follows:

 $k_1 = 0.0570421 d^{-1}, k_2 = 0.0007 d^{-1}, g = 0.557696$

R401553	Aer	verobic conditions								
Soil type	X^2	pН	t. °C / %	DT ₅₀ / DT ₉₀	f. f.	DT ₅₀ (d)	St.	Method of		
			MWHC	(d)	k _{dp} /k	20°C	(chi ²)	calculation		
					f	pF2/10kPa				
Frensham		6.6	20°C/40%	1.36	(d)	0.9	9.1	SFO		
(sandy loam)			MWHC	/4.52						
Wisborough		6.4	20°C/40%	1.59/	(d)	0.9	10.9	SFO		
Green			MWHC	5.29						
(silty clay loam)										
East Anglia		7.9	20°C/40%	2.01/	(d)	1.5	12.3	SFO		
(loamy sand)			MWHC	6.68						
Geometric mean				1.63/		1.07				
				5.43						

 $^{(d)}$ = R401553 applied as parent therefore no formation fractions

R402173	Aer	Aerobic conditions							
Soil type	X^2	pН	t. °C / %	DT ₅₀ / DT ₉₀	f. f.	DT ₅₀ (d)	St.	Method of	
			MWHC	(d)	k _{dp} /k	20°C	(chi ²)	calculation	
					f	pF2/10kPa			
Frensham		6.6	20°C/40%	8.44/28.0	(e)	5.7	8.6	SFO	
(sandy loam)			MWHC						
Wisborough		6.4	20°C/40%	4.24/	(e)	2.4	12.3	SFO	
Green			MWHC	14.1					
(silty clay loam)									
East Anglia		7.9	20°C/40%	9.80/	(e)	7.5	12.7	SFO	
(loamy sand)			MWHC	32.6					
Geometric mean/median			7.05/		4.68				
				23.43					

^{(e) =} R402173 applied as parent therefore no formation fractions

Field studies ±

	-																		
Parent	Aerobic conditions																		
Soil type. (USDA)	Location (country or USA state).	X ²	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	DT ₅₀ (d) 20°C pF2/10 kPa	St (chi ²)	DT50 quick phase ^b	DT50 slow phase ^b	Method of calculation								
Azoxystrobi	n applied to bar	e soil	l and inc	orporate	d.						Azoxystrohin applied to have soil and incorporated								

Sandy clay loam	Spalding, Lincolnshire	-	7.5 (0-15 cm)	30	261.9	869.9	106.7	10.6	-	-	SFO
Silty clay loam	Nagele, Netherlands	-	7.9 (0-15 cm)	30	186.4	619.3	86.3	10.2	-	-	SFO
Sandy clay loam (0-20cm depth)	Shirebrook, Derbyshire	-	6.7 (0-20 cm)	30	120.9	401.7	56.1	17.2	-	-	SFO
Azoxystrobi	in applied to soil	surf	ace and	not inco	rporated	l					
Clay loam	Volpedo, Italy		8.2(0- 20cm)	30					2.62	80.6	DFOP
Sandy loam	Bienenbuttel- Varendorf, Germany		6.4(0- 30cm)	30					2.95	61.3	DFOP
Sandy clay loam	Saxa-Anhalt, Germany		6.6(0- 30cm)	30					1.64	93.7	DFOP
Clay loam	Isle/ Sorgue, France		8.5(0- 20cm)	30					4.65	121.6	DFOP
Sandy loam	Monteux Vaucluse, France		8.5 (0- 20cm)	30					4.03	68	DFOP
Silt loam	St Vigor, France		6.1(0- 20cm)	30					3.02	34.5	DFOP
Silty clay loam	Massalombard a, France		8.3(0- 20cm)	30					1.39	105	DFOP
Clay loam	Grisolles, France		7.7(0- 20cm)	30					13.3	66	DFOP
Clay	Cambridgeshi re, UK		8.0 (0- 20cm)	30					2.09	93.7	DFOP
Clay	Somerset, UK		8.1(0- 20cm)	30					0.42	73.7	DFOP
Geometric r	nean ^a				180.7	600.4	80.2		2.55	75.9	

 $a = the DT_{50}$ used by the RMS in the slow phase (microbial degradation) groundwater modelling and surface water modelling was the geometric mean of the soil incorporated field studies (80.2 days) and the slow phase of the soil non-incorporated studies (75.9 days) = 78 days.

b = Q10 of 2.58 for the correction of the temperature effect was used in the normalization procedure for the whole, biphasic decline

pH dependence **‡** (yes / no) (if yes type of dependence) No

Soil accumulation and plateau concentration **‡**

A plateau concentration of 0.646 mg/kg occurred after the seventh year of application. The steady-state concentration (immediately before application) plateaud at 0.246 mg/kg.

Laboratory studies **‡**

Parent	Anaer	Anaerobic conditions					
Soil type	X^{10}	pН	t. °C / %	DT ₅₀ /DT ₉₀	DT ₅₀ (d)	St.	Method of
(USDA)			MWHC	(d)	20°C	(chi ²)	calculation
					pF2/10kPa		
Sandy clay loam	-	7.0	20 °C / flooded	59.8/198	59.8/162.68	3.41	SFO
Sandy loam	-	7.0	20 °C / flooded	49.0/163	49.0/198.23	6.76	SFO
Geometric mean/median			54.1/180	54.1/180			

 X^3 This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent ‡							
Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Sandy clay loam	1.7	7.5	12	690	7.9	465	0.84
Loamy sand A	1.7	7.8	6.0	357	4	235	0.82
Loamy sand B	3.0	7.9	9.0	304	6.2	207	0.85
Sand	0.3	5.5	2.1	724	1.5	500	0.84
Silty clay loam	1.6	4.9	12	739	9.5	594	0.90
Clay loam	2.8	5.5	20	718	15	536	0.90
Arithmetic mean/median			7.35/7.05	423/482	0.86/0.86		
pH dependence (yes or no		no					

Metabolite R401553							
Soil Type	OC %	Soil	Kd	Koc	Kf	Kfoc	1/n
		pН	(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Sandy clay loam	1.74	7.5	3.0	172	1.9	110	0.81
Loamy sand	0.29	6.8	1.1	376	0.76	260	0.81
Sandy loam	2.96	8.5	3.6	121	2.4	81	0.84
Silty clay loam	2.15	6.2	17.6	808	11	500	0.89
Silty clay loam	2.38	5.6	2.2	90	1.6	66	0.85
Clay loam	2.61	5.4	3.6	138	2.9	110	0.92
Arithmetic mean/median			3.43/2.15	188/110	0.85/0.85		
pH dependence (yes or n		no					
Metabolite R402173							
Soil Type	OC %	Soil	Kd	Koc	Kf	Kfoc	1/n
		pН	(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Sandy clay loam	1.74	7.5	0.7	40	0.65	37	0.96
Loamy sand	0.29	6.8	0.29	101	0.27	93	0.95
Sandy loam	2.96	8.5	0.80	27	0.74	25	0.96
Silty clay loam	2.15	6.2	5.5	254	4.2	200	0.92
Silty clay loam	2.38	5.6	2.4	100	2.0	86	0.93
Clay loam	2.61	5.4	3.2	124	2.9	110	0.96
Arithmetic mean/median	1				1.79/1.37	91.8/90	0.95/0.96
pH dependence (yes or n	io)		yes				

Metabolite R234886							
Soil Type	OC %	Soil	Kd	Koc	Kf	Kfoc	1/n
		pН	(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Loamy sand	2.96	7.5	1.0	34	0.82	28	0.90
Clay loam	2.78	4.8	14.2	514	10	360	0.89
Loamy sand	1.68	7.3	0.55	32.4	0.35	21	0.76
Sand	0.29	4.6	2.3	772	1.4	490	0.79
Silty clay loam	1.62	4.2	9.1	564	6.8	420	0.90
Sandy clay loam	1.74	6.8	1.1	65	0.85	49	0.85
Arithmetic mean/median			3.37/1.125	228/205	0.85/0.87		
pH dependence (yes or n	yes						

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡	No leaching observed
Aged residues leaching ‡	Ageing for 30 d

Lysimeter/ field leaching studies **‡**

Not submitted - not required

PEC (soil) (Annex IIIA, point 9.1.3)

Parent			DT ₅₀ (d): 262 days			
Method of calcula	tion		Kinetics: SFO			
			Field or Lab: representative worst case from field (incorporated) studies.			
Application data			Crop: brass	icae		
			Depth of so	il layer: 5 cm		
			Soil bulk density: 1.5 g/cm ³			
			% plant interception: 40 %			
			Number of applications: 2			
			Interval (d): 12			
			Application rate(s): 250 g as/ha			
PEC _(s) (mg/kg)	Single application	Single application		Multiple application	Multiple application	
	Actual	Time we	eighted	Actual	Time weighted	
		average			average	
Initial	0.200			0.394		
Short term 24h	0.199	0.200		0.393	0.393	

Peer Review of the pesticide risk assessment of the active substance azoxystrobin

	2d	0.199	0.199		0.392	0.393		
	4d	0.198	0.199		0.390	0.392		
Long term	7d	0.189	0.195		0.372	0.383		
	28d	0.186	0.193		0.366	0.380		
	50d	0.175	0.187		0.345	0.369		
	100d	0.154	0.176		0.302	0.346		
Parent				DT ₅₀ (d): 26	52 days			
Method of	calcula	tion		Kinetics: SI	FO .			
				Field or Lat (incorporate	b: representative wors ed) studies.	st case from field		
Application	n data			Crop: cerea	ls			
				Depth of so	il layer: 5 cm			
				Soil bulk density: 1.5 g/cm ³				
				% plant inte	erception: 70 %			
				Number of applications: 2				
				Interval (d):	: 14			
				Application	rate(s): 250 g as/ha			
$PEC_{(s)}$		Single application	Single applicati	on	Multiple application	Multiple application		
		Actual	Time we average	ighted	Actual	Time weighted average		
Initial		0.100			0.196			
Short term	24h	0.100	0.100		0.196	0.196		
	2d	0.099	0.100		0.195	0.196		
	4d	0.099	0.099		0.194	0.195		
Long term	7d	0.095	0.097		0.186	0.191		
	28d	0.093	0.096		0.182	0.189		
	50d	0.088	0.094		0.172	0.184		
	100d	0.077	0.088		0.151	0.173		

Metabolite R401553 Method of calculation			Molecular weight relative to the parent: 0.529 DT ₅₀ (d): not required Kinetics: - Field or Lab: -			
Application data			Crop: brassi Application R401553 is found in fie	icae rate assumed: 250 g formed at a maximus ld studies) of the app	as/ha (assumed Met n of 17 % (max lied dose)	
PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average		Multiple application Actual	Multiple application Time weighted average	
Initial	0.018			0.036		
Application data			Crop: cerea Application R401553 is found in fie	ls rate assumed: 250 g formed at a maximus ld studies) of the app	as/ha (assumed Met n of 17 % (max lied dose)	
PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average		Multiple application Actual	Multiple application Time weighted average	
Initial	0.009			0.018		
Metabolite R402	173		Molecular v	veight relative to the	parent: 0.826	
Metabolite R402173 Method of calculation			DT_{50} (d): not required Kinetics: -			

			Kinetics: - Field or Lal	b: -	
Application data			Crop: brass Application R402173 is found in fie	icae rate assumed: 250 g formed at a maximu ld studies) of the app	as/ha (assumed Met m of 17 % (max lied dose)
PEC _(s) (mg/kg)	Single application Actual	Single applicati Time we average	on eighted	Multiple application Actual	Multiple application Time weighted average
Initial	0.028			0.055	
				·	

Application dataCrop: cerealsApplication rate assumed: 250 g as/ha (assumed Met
R402173 is formed at a maximum of 17 % (max
found in field studies) of the applied dose)

Peer Review of the pesticide risk assessment of the active substance azoxystrobin

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average		Multiple application Actual	Multiple application Time weighted average	
Initial	0.014			0.028		
Metabolite R234886 Method of calculation			Molecular weight relative to the parent: 0.965 DT ₅₀ (d): not required Kinetics: - Field or Lab: -			
Application data		Crop: brass Application R234886 is applied dos		vicae n rate assumed: 250 g as/ha (assumed Met s formed at a maximum of 28.8 % of the se)		
PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average		Multiple application Actual	Multiple application Time weighted average	
Initial	0.056			0.110		
Application data			Crop: cerea Application R234886 is applied dose	ls rate assumed: 250 g formed at a maximus e)	as/ha (assumed Met n of 28.8 % of the	
PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average		Multiple application Actual	Multiple application Time weighted average	
Initial	0.028			0.054		

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and metabolites $> 10 \% \ddagger$	Hydrolytically stable (pH 5 – 9 at 25° C)
Photolytic degradation of active substance and metabolites above 10 % ‡	$DT_{50} = \begin{cases} 8.7 \text{ d} & (^{14}\text{C-pyrimidinyl}) \\ 11.9 \text{ d} & (^{14}\text{C-phenylacrylate}) \\ 13.9 \text{ d} & (^{14}\text{C-cyanophenyl}) \end{cases}$
	R230310 only degradate greater than 10% (Z-isomer of azoxystrobin)
	R401553 (8.9%)
	R402173 (2.4%)
Quantum yield of direct phototransformation in water at $\Box > 290$ nm	No data submitted
Readily biodegradable ‡ (yes/no)	No data submitted

Degradation in water / sediment

Parent	Distrib Basing	Distribution (max in water 91.2 % AR after 0 d, (Virginia), Max. sed 90.5 % after 0 d (Old Basing))								
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (Chi ²)	DT ₅₀ - DT ₉₀ water	St. (r ²)	DT ₅₀ - DT ₉₀ sed	St. (r ²)	Method of calculation
Old Basing	7.5	7.8	20° C	234/777	2.440	-	-	-	-	SFO
Virginia water	6.4	6.9	20° C	180/598	4.095	-	-	-	-	SFO
Geometric mean/median				205/682		-		-		

Metabolite R234886	Distrib	Distribution (max in water 10.8 % after 152 d, Max. sed 15.6% after 152 d)									
Water /	pН	pН	t. °C	DT	50-DT90	St.	DT ₅₀ -DT ₉₀	r^2	DT ₅₀ -	St.	Method of
sediment	water	sed		who	ole sys.	$(r^2$	water		DT_{90}	$(r^2$	calculation
system	phase)			sed)	
Old Basing	7.5	7.8	20°	-	*		-*		_*		
			С								
Virginia Water	6.4	6.9	20°	-	*		-*		_*		
-			С								
Geometric mean	/median			-							

* In the exposure assessment a default worst case DT_{50} of 1000 days was used for water, sediment and whole system and therefore no DT_{50} s were calculated from the above study.

Mineralization and non extractable residues								
Water /	pН	pН	Mineralization	Non-extractable	Non-extractable residues			
sediment	water	sed	x % after n d. (end	residues in sed. Max	in sed. Max x % after n d			
system	phase		of the study).	x % after n d	(end of the study)			

Peer Review of the pesticide risk assessment of the active substance azoxystrobin

Old Basing	7.5	7.8	2.5% after 152	5.9% after 152 days	5.9% after 152 days
			days		
Virginia Water	6.4	6.9	5.1% after 152	6.7% after 152 days	6.7% after 152 days
			days		

Parent (applied at 25 g a.s/ha)	Distrib	Distribution (max in water 10.3 µg/l after 3 hrs. Max. sed 0.039 mg/kg after 21 d)								
Water /	pН	pН	t. °C	DT ₅₀ -DT ₉₀	St.	DT ₅₀ -DT ₉₀	St.	DT ₅₀ -	St.	Method of
sediment	water	sed		whole sys.	(r	water	(r^{2})	DT ₉₀	(\mathbf{r}^2)	calculation
system	phase				²)	(days)		sed)	
Outdoor pond	9.06	7.5		Not		13.1/43.6		Not		SFO
_				calculated				calculated		
Geometric mea				13.1/43.6 #						

[#]Not used in exposure modelling but provided here for information

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent	Version control no.1.1 of FOCUS STEP 1 + 2:				
Parameters used in FOCUSsw step 1 and 2	Molecular weight 403.4 (g/mol):				
	Water solubility 6.0 (mg/L):				
	Kf _{OC} (L/kg): 427 [#]				
	DT_{50} soil (d): 78 days (the geometric mean of the soil incorporated field studies (80.2 days) and the slow phase of the soil non-incorporated studies (75.9 days)).				
	DT ₅₀ water/sediment system (d): 205				
	(geomean of sediment water studies)				
	DT ₅₀ water (d): 1000				
	DT ₅₀ sediment (d): 205 (whole system)				
	Crop interception (%): 40 (brassica)				
	70 (cereals)				
Parameters used in FOCUSsw step 3 (if	Vapour pressure: 1.1 x 10 ⁻¹⁰				
performed)	Kom/Koc: 427				
	1/n: 0.86 (Freundlich exponent)				
Application rate	Crop: wheat				
	Crop interception: 70%				
	Number of applications: 2				
	Interval (d): 14				
	Application rate(s): 250 g as/ha				
	Application window: March-May				
	Crop: brassica				
	Crop interception: 40%				
	Number of applications: 2				
	Interval (d): 12				

Application rate(s): 250 g as/ha

Application window: March-May

 $^{\#}$ = Whilst a Kfoc of 427 was accepted for use in the modelling the correct mean Kfoc was 423 L/kg.

FOCUS	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
STEP 1	overall maximum	Actual	TWA	Actual	TWA
	0 h	110.8	-	453.5	-
	24 h	108.8	109.8	464.4	459.0
	2 d	108.4	109.2	462.9	461.3
	4 d	107.7	108.6	459.7	461.3
	7 d	106.6	108.0	455.1	459.6
	14 d	104.1	106.6	444.5	454.7
	21 d	101.7	105.4	434.1	449.5
	28 d	99.3	104.2	423.9	444.4
	42 d	94.7	101.8	404.3	434.3

Brassica (2 x 250 g a.s/ha)									
FOCUS STEP 2 Scenario	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$					
	overall maximum	Actual	TWA	Actual	TWA				
Northern	0 h	14.6	-	60.6	-				
EU	24 h	14.2	14.4	60.5	60.5				
	2 d	14.2	14.3	60.4	60.5				
	4 d	14.1	14.2	60.2	60.4				
	7 d	14.1	14.2	59.9	60.2				
	14 d	13.9	14.1	59.2	59.9				
	21 d	13.8	14.0	58.5	59.5				
	28 d	13.6	13.9	57.8	59.2				
	42 d	13.3	13.8	56.5	58.5				
Southern	0 h	26.3	-	110.3	-				
EU	24 h	25.9	26.1	110.1	110.2				
	2 d	25.8	26.0	109.9	110.1				
	4 d	25.8	25.9	109.5	109.9				
	7 d	25.6	25.8	109.0	109.6				

Brassica (2 x 250 g a.s/ha)										
FOCUS STEP 2 Scenario	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)						
	overall maximum	Actual	TWA	Actual	TWA					
	14 d	25.3	25.6	107.7	109.0					
	21 d	25.0	25.5	106.5	108.3					
	28 d	24.7	25.3	105.2	107.7					
	42 d	24.2	25.0	102.8	106.5					

Winter cereals (2 x 250 g a.s/ha)										
FOCUS	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)						
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA					
Northern	0 h	8.69	-	35.49	-					
EU	24 h	8.33	8.51	35.43	35.46					
	2 d	8.32	8.42	35.37	35.43					
	4 d	8.29	8.36	35.25	35.37					
	7 d	8.25	8.32	35.08	35.28					
	14 d	8.15	8.26	34.67	35.08					
	21 d	8.06	8.21	34.27	34.87					
	28 d	7.97	8.16	33.87	34.67					
	42 d	7.78	8.07	33.09	34.27					
Southern	0 h	14.48	-	60.13	-					
EU	24 h	14.12	14.30	60.03	60.08					
	2 d	14.10	14.20	59.93	60.03					
	4 d	14.05	14.14	59.73	59.93					
	7 d	13.98	14.08	59.43	59.78					
	14 d	13.82	13.99	58.74	59.43					
	21 d	13.66	13.91	58.06	59.09					
	28 d	13.50	13.82	57.38	58.74					
	42 d	13.19	13.66	56.06	58.07					

The following table summarises the highest FOCUS STEP 3 PECsw and PECsed for each scenario/crop. For all PECs see the further tables below. Keys for water body types: d – ditch, s – stream, p – pond

		Maximum PEC					
Scena	Water	Brassicas	Spring cereals	Winter cereals			

rio	body						
		Water	Sediment	Water	Sediment	Water	Sediment
		(µg/l)	(µg/kg)	(µg/l)	(µg/kg)	(µg/l)	(µg/kg)
D1	d	-	_	3.432	25.22	3.684	19.27
				(2 apps)	(2 apps)	(2 apps)	(2 apps)
D1	S	-	-	2.143	13.71	2.3	11.24
				(2 apps)	(2 apps)	(2 apps)	(2 apps)
D2	d	-	-	-	-	4.208	18.29
						(2 apps)	(2 apps)
D2	s	-	-	-	-	2.629	10.16
						(2 apps)	(2 apps)
D3	d	1.584	0.796	1.589	1.171	1.584	0.927
		(1 app)	(2 apps)	(1 app)	(2 apps)	(1 app)	(2 apps)
D4	р	0.447	3.131	0.851	5.577	0.764	5.063
		(1 app)	(1 app)	(2 apps)	(2 apps)	(2 apps)	(2 apps)
D4	s	1.185	1.15	1.367	2.031	1.37	1.944
		(2 apps)	(1 app)	(1 app)	(2 apps)	(1 app)	(2 apps)
D5	р	-	-	0.108	1.096	0.208	2.07
				(2 apps)	(2 apps)	(2 apps)	(2 apps)
D5	s	-	-	1.478	0.401	1.461	0.569
				(1 app)	(2 apps)	(1 app)	(2 apps)
D6	d	-	-	-	-	1.593	1.466
						(1 app)	(2 apps)
R1	р	0.746	4.517	-	-	0.549	3.103
		(2 apps)	(2 apps)			(2 app)	(2 apps)
R1	S	3.512	2.808	-	-	3.042	3.32
		(2 apps)	(2 apps)			(2 app)	(2 apps)
R2	S	1.505	2.006	-	-	-	-
		(2 apps)	(2 apps)				
R3	S	5.806	3.652	-	-	2.605	1.241
		(2 apps)	(2 apps)			(1 and	(1 app)
						2 apps)	
R4	S	7.584	4.24	3.437	2.884	4.585	4.215
		(2 apps)	(2 apps)	(1 and 2	(1 app)	(2 apps)	(2 apps)
				apps)			

Brassica (1 x 250 g a.s/ha)							
FOCUSWaterSTEP 3bodyScenario	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)			
	body	overall maximum	Actual	TWA	Actual	TWA	
D3	d	0 h	1.584		0.757		
		24 h	0.742	1.224	0.624	0.734	
		2 d	0.106	0.791	0.496	0.684	
		4 d	0.009	0.412	0.367	0.584	
		7 d	0.003	0.237	0.284	0.484	
		14 d	0.001	0.119	0.206	0.368	

Г

Brassica (1 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	(g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		21d	-	0.080	0.169	0.309		
		28 d	-	0.060	0.146	0.272		
		42 d	-	0.040	0.118	0.226		
D4	р	0 h	0.447		3.131			
		24 h	0.446	0.447	3.131	3.131		
		2 d	0.445	0.446	-	3.131		
		4 d	0.441	0.446	-	3.131		
		7 d	0.434	0.445	-	3.131		
		14 d	0.415	0.440	-	3.129		
		21 d	0.397	0.435	-	3.126		
		28 d	0.384	0.429	-	3.123		
		42 d	0.351	0.415	-	3.111		
D4	s	0 h	1.183		1.15			
		24 h	0.009	0.491	1.147	1.149		
		2 d	0.008	0.441	1.139	1.148		
		4 d	0.007	0.414	1.117	1.146		
		7 d	0.005	0.374	1.073	1.141		
		14 d	0.008	0.312	0.968	1.125		
		21 d	0.008	0.294	0.909	1.097		
		28 d	0.006	0.267	0.934	1.065		
		42 d	0.008	0.204	0.843	1.017		
R1	р	0 h	0.483		2.945			
		24 h	0.473	0.478	2.945	2.945		
		2 d	0.465	0.474	2.942	2.945		
		4 d	0.452	0.466	2.938	2.945		
		7 d	0.436	0.457	2.934	2.944		
		14 d	0.405	0.439	2.926	2.943		
		21 d	0.378	0.423	2.916	2.941		
		28 d	0.418	0.421	2.902	2.938		
		42 d	0.426	0.419	2.865	2.933		
R1	s	0 h	1.824		1.842			

Brassica (1 x 250 g a.s/ha)									
FOCUS	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg/k	PEC _{SED} (µg/kg)			
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA			
		24 h	0.039	1.466	1.645	1.766			
		2 d	0.004	0.740	1.523	1.690			
		4 d	0.001	0.371	1.395	1.585			
		7 d	0.001	0.212	1.29	1.493			
		14 d	0	0.122	1.168	1.372			
		21 d	0	0.083	1.064	1.291			
		28 d	0	0.073	1.093	1.253			
		42 d	0.002	0.077	1.073	1.195			
R2	s	0 h	1.383		0.836				
		24 h	0	0.488	0.73	0.793			
		2 d	0	0.259	0.671	0.754			
		4 d	0	0.130	0.609	0.701			
		7 d	0	0.074	0.562	0.654			
		14 d	0.001	0.055	0.500	0.594			
		21 d	0.656	0.037	0.460	0.557			
		28 d	0	0.033	0.612	0.538			
		42 d	0	0.031	0.470	0.534			
R3	s	0 h	2.551		1.533				
		24 h	0.700	2.201	1.166	1.449			
		2 d	0.017	1.197	0.951	1.305			
		4 d	0.005	0.603	0.756	1.105			
		7 d	0.002	0.346	0.630	0.939			
		14 d	0.001	0.173	0.500	0.755			
		21 d	0.000	0.116	0.434	0.661			
		28 d	0.003	0.127	0.670	0.655			
		42 d	0.001	0.101	0.568	0.654			
R4	S	0 h	4.379		2.183				
		24 h	0.044	3.325	1.512	1.950			
		2 d	0.007	1.672	1.195	1.709			
		4 d	0.002	0.838	0.923	1.481			
		7 d	0.001	0.479	0.751	1.298			

Brassica (1 x 250 g a.s/ha)							
FOCUSWaterSTEP 3bodyScenario	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)			
	body	overall maximum	Actual	TWA	Actual	TWA	
		14 d	0.001	0.398	1.039	1.256	
		21 d	0.001	0.326	1.089	1.200	
		28 d	0.835	0.252	1.236	1.145	
		42 d	0.094	0.193	0.897	1.099	

simulated period too short for calculation

Brassica (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$			
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D3	d	0 h	1.383		0.796			
		24 h	0.646	1.068	0.679	0.776		
		2 d	0.092	0.689	0.562	0.730		
		4 d	0.008	0.359	0.443	0.640		
		7 d	0.002	0.207	0.364	0.549		
		14 d	0.001	0.104	0.282	0.439		
		21d	0.000	0.070	0.239	0.382		
		28 d	0.005	0.103	0.211	0.343		
		42 d	0.001	0.069	0.175	0.322		
D4	р	0 h	0.085		0.788			
		24 h	0.085	0.085	-	0.787		
		2 d	0.084	0.085	-	0.785		
		4 d	0.084	0.085	-	0.782		
		7 d	0.083	0.084	-	0.777		
		14 d	0.080	0.084	-	0.763		
		21 d	0.076	0.082	-	0.745		
		28 d	-	0.081	-	0.722		
		42 d	-	0.071	-	0.660		

Г

Brassica (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/k	.g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D4	s	0 h	1.185		0.382			
		24 h	0.002	0.346	0.380	0.382		
		2 d	0.001	0.194	0.377	0.381		
		4 d	0	0.175	0.368	0.380		
		7 d	0	0.151	0.349	0.376		
		14 d	0	0.124	0.308	0.364		
		21 d	0	0.098	0.275	0.349		
		28 d	0	0.079	0.250	0.335		
		42 d	0	0.056	-	0.290		
R1	р	0 h	0.746		4.517			
		24 h	0.734	0.740	4.517	4.517		
		2 d	0.724	0.734	4.516	4.517		
		4 d	0.707	0.725	4.515	4.517		
		7 d	0.684	0.713	4.512	4.517		
		14 d	0.639	0.688	4.515	4.515		
		21 d	0.6	0.666	4.509	4.515		
		28 d	0.621	0.655	4.497	4.515		
		42 d	0.59	0.638	4.427	4.511		
R1	s	0 h	3.512		2.808			
		24 h	0.075	2.824	2.234	2.613		
		2 d	0.007	1.424	1.948	2.404		
		4 d	0.002	0.714	1.685	2.137		
		7 d	0.001	0.412	1.502	1.917		
		14 d	0.000	0.298	1.285	1.660		
		21 d	0.000	0.237	1.155	1.516		
		28 d	0.001	0.207	1.188	1.455		
		42 d	0.002	0.187	1.622	1.384		
R2	s	0 h	1.505		2.006			
		24 h	0.003	1.276	1.715	1.887		
		2 d	0.002	0.678	1.566	1.782		
		4 d	0.001	0.34	1.415	1.647		

Γ

			Brassica (2 x 2	250 g a.s/ha)		
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)	
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
		7 d	0.000	0.194	1.299	1.529
		14 d	0.000	0.103	1.150	1.379
		21 d	0.000	0.069	1.052	1.289
		28 d	0.370	0.081	1.414	1.244
		42 d	0.000	0.067	1.072	1.231
R3	s	0 h	5.806		3.652	
		24 h	1.598	5.009	2.800	3.448
		2 d	0.038	2.725	2.306	3.107
		4 d	0.010	1.373	1.872	2.650
		7 d	0.004	0.787	1.586	2.277
		14 d	0.001	0.427	1.284	1.862
		21 d	0.001	0.286	1.124	1.647
		28 d	0.008	0.289	1.614	1.626
		42 d	0.002	0.229	1.362	1.603
R4	s	0 h	7.584		4.240	
		24 h	0.078	5.759	3.023	3.823
		2 d	0.013	2.896	2.467	3.394
		4 d	0.004	1.452	1.982	2.862
		7 d	0.002	0.853	1.659	2.51
		14 d	0.001	0.678	1.966	2.455
		21 d	0.003	0.621	2.088	2.307
		28 d	0.432	0.472	2.217	2.245
		42 d	0.000	0.391	1.508	2.093

simulated period too short for calculation

Spring cereals (1 x 250 g a.s/ha)							
FOCUS W STEP 3 bo Scenario	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
	body	overall maximum	Actual	TWA	Actual	TWA	
D1	d	0 h	1.819		14.9		
		24 h	1.692	1.747	-	14.89	

		1				
FOCUS	Water	Day after	$PEC_{SW}(\mu g/L)$	$PEC_{SW}(\mu g/L)$		(g)
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
		2 d	1.621	1.700	-	14.88
		4 d	1.530	1.636	-	14.88
		7 d	1.437	1.616	-	14.86
		14 d	1.261	1.567	-	14.77
		21d	1.080	1.520	-	14.70
		28 d	0.903	1.479	-	14.66
		42 d	0.619	1.441	-	14.54
D1	8	0 h	1.403		8.209	
		24 h	0.453	1.089	-	8.193
		2 d	0.033	1.028	-	8.186
		4 d	0.006	1.014	-	8.176
		7 d	0.003	1.005	-	8.159
		14 d	0.002	0.97	-	8.083
		21d	0.001	0.935	-	8.024
		28 d	0.001	0.907	-	7.977
		42 d	0.001	0.890	-	7.854
D3	d	0 h	1.589		0.969	
		24 h	1.114	1.358	0.861	0.954
		2 d	0.420	1.059	0.714	0.914
		4 d	0.040	0.61	0.536	0.813
		7 d	0.008	0.356	0.416	0.690
		14 d	0.002	0.18	0.301	0.532
		21d	0.001	0.12	0.246	0.449
		28 d	0.001	0.091	0.212	0.396
		42 d	0.000	0.061	0.171	0.329
D4	р	0 h	0.271		2.039	
		24 h	0.271	0.271	2.039	2.039
		2 d	0.270	0.271	2.039	2.039
		4 d	0.268	0.271	2.039	2.039
		7 d	0.263	0.270	-	2.039
		14 d	0.252	0.267	-	2.038

Spring cereals (1 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		21 d	0.241	0.264	-	2.037		
		28 d	0.236	0.260	-	2.035		
		42 d	0.216	0.252	-	2.029		
D4	S	0 h	1.367		0.701			
		24 h	0.002	0.375	0.699	0.701		
		2 d	0.001	0.277	0.694	0.700		
		4 d	0.000	0.257	0.680	0.698		
		7 d	0.000	0.227	0.653	0.694		
		14 d	0.000	0.182	0.587	0.684		
		21 d	0.000	0.173	0.556	0.667		
		28 d	0.000	0.157	0.585	0.646		
		42 d	0.000	0.120	0.528	0.621		
D5	р	0 h	0.065		0.474			
		24 h	0.063	0.064	0.474	0.474		
		2 d	0.062	0.063	0.473	0.474		
		4 d	0.061	0.062	0.473	0.474		
		7 d	0.059	0.061	0.472	0.473		
		14 d	0.056	0.059	0.470	0.473		
		21 d	0.053	0.057	0.467	0.473		
		28 d	0.051	0.056	0.465	0.473		
		42 d	0.047	0.054	0.46	0.472		
D5	S	0 h	1.478		0.374			
		24 h	0.01	0.568	0.275	0.343		
		2 d	0.002	0.286	0.216	0.303		
		4 d	0.001	0.144	0.162	0.250		
		7 d	0.000	0.082	0.128	0.206		
		14 d	0.000	0.041	0.097	0.159		
		21 d	0.000	0.028	0.082	0.136		
		28 d	0.000	0.021	0.073	0.121		
		42 d	0.000	0.014	0.061	0.103		
R4	S	0 h	3.437		2.884			

		SI	oring cereals (1	x 250 g a.s/ha)		
FOCUS STEP 3 Scenario	Water	Day after overall maximum	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	g)
	body		Actual	TWA	Actual	TWA
		24 h	2.195	2.333	2.262	2.711
		2 d	0.679	2.220	1.908	2.517
		4 d	0.005	1.146	1.564	2.248
		7 d	0.973	0.962	1.707	2.045
		14 d	0.001	0.573	1.218	1.793
		21 d	0.000	0.392	1.024	1.584
		28 d	0.000	0.295	0.902	1.440
		42 d	0.000	0.196	0.745	1.251

Spring cereals (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)			
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D1	d	0 h	3.432		25.22			
		24 h	3.355	3.417	-	25.20		
		2 d	3.398	3.388	-	25.20		
		4 d	3.348	3.384	-	25.19		
		7 d	3.246	3.361	-	25.18		
		14 d	2.975	3.260	-	25.07		
		21d	2.767	3.151	-	25.00		
		28 d	2.960	3.085	-	24.95		
		42 d	2.541	2.996	-	24.82		
D1	s	0 h	2.143		13.71			
		24 h	2.090	2.135	-	13.69		
		2 d	2.114	2.114	-	13.68		
		4 d	2.081	2.111	-	13.67		
		7 d	2.007	2.095	-	13.65		
		14 d	1.819	2.022	-	13.55		
		21d	1.679	1.946	-	13.47		
		28 d	1.824	1.9	-	13.41		
		42 d	1.465	1.842	-	13.25		

Spring cereals (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	(g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D3	d	0 h	1.391		1.171			
		24 h	1.088	1.231	1.088	1.161		
		2 d	0.652	1.056	0.958	1.134		
		4 d	0.110	0.689	0.769	0.934		
		7 d	0.016	0.413	0.625	0.759		
		14 d	0.004	0.210	0.478	0.759		
		21d	0.002	0.141	0.405	0.659		
		28 d	0.001	0.103	0.357	0.593		
		42 d	0.000	0.122	0.296	0.506		
D4	р	0 h	0.851		5.577			
		24 h	0.850	0.851	5.577	5.577		
		2 d	0.847	0.850	-	5.577		
		4 d	0.841	0.849	-	5.577		
		7 d	0.827	0.847	-	5.576		
		14 d	0.790	0.839	-	5.573		
		21 d	0.755	0.829	-	5.568		
		28 d	0.725	0.816	-	5.562		
		42 d	0.660	0.789	-	5.539		
D4	s	0 h	1.184		5.577			
		24 h	0.002	0.851	5.577	5.577		
		2 d	0.001	0.850	-	5.577		
		4 d	0.000	0.849	-	5.577		
		7 d	0.000	0.847	-	5.576		
		14 d	0.000	0.839	-	5.573		
		21 d	0.000	0.829	-	5.568		
		28 d	0.000	0.816	-	5.562		
		42 d	0.000	0.789	-	5.539		
D5	р	0 h	0.108		0.401			
		24 h	0.106	0.107	0.315	1.096		
		2 d	0.105	0.106	0.263	1.096		
		4 d	0.103	0.105	0.213	1.096		

Γ

Spring cereals (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$			
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		7 d	0.101	0.104	0.181	1.096		
		14 d	0.097	0.102	0.148	1.096		
		21 d	0.093	0.099	0.131	1.096		
		28 d	0.090	0.097	0.120	1.095		
		42 d	0.084	0.094	0.104	1.093		
D5	s	0 h	1.278		0.401			
		24 h	0.009	0.491	0.315	0.374		
		2 d	0.002	0.247	0.263	0.339		
		4 d	0.001	0.124	0.213	0.292		
		7 d	0.000	0.071	0.181	0.252		
		14 d	0.000	0.037	0.148	0.208		
		21 d	0.000	0.031	0.131	0.186		
		28 d	0.000	0.027	0.120	0.171		
		42 d	0.000	0.024	0.104	0.164		
R4	s	0 h	3.437		2.881			
		24 h	2.195	2.333	2.259	2.707		
		2 d	0.679	2.220	1.905	2.513		
		4 d	0.005	1.146	1.561	2.245		
		7 d	0.973	0.962	1.705	2.041		
		14 d	0.001	0.586	1.248	1.813		
		21 d	0.000	0.400	1.043	1.606		
		28 d	0.000	0.300	0.917	1.459		
		42 d	0.000	0.200	0.756	1.268		

simulated period too short for calculation

Winter cereals (1 x 250 g a.s/ha)								
FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC _{sw} (µg/L) Actual	TWA	PEC _{SED} (µg/k Actual	g) TWA		
D1	d	0 h	2.037		10.81			

Winter cereals (1 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	(g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		24 h	1.906	1.963	10.80	10.81		
		2 d	1.830	1.914	10.80	10.81		
		4 d	1.730	1.845	10.77	10.80		
		7 d	1.623	1.772	10.70	10.80		
		14 d	1.417	1.649	10.44	10.76		
		21d	1.209	1.598	10.10	10.71		
		28 d	1.009	1.567	9.72	10.67		
		42 d	1.689	1.524	8.961	10.63		
D1	S	0 h	1.404		5.691			
		24 h	0.454	1.09	5.686	5.691		
		2 d	0.034	1.067	5.671	5.690		
		4 d	0.007	1.063	5.584	5.685		
		7 d	0.003	1.057	5.097	5.674		
		14 d	0.002	1.023	4.822	5.626		
		21d	0.002	0.987	4.634	5.539		
		28 d	0.001	0.964	4.011	5.418		
		42 d	0.001	0.934	3.413	5.328		
D2	d	0 h	2.099		9.144			
		24 h	1.265	1.943	9.129	9.138		
		2 d	2.009	1.895	9.091	9.131		
		4 d	0.882	1.830	9.056	9.105		
		7 d	0.872	1.756	8.963	9.075		
		14 d	0.698	1.176	8.784	9.016		
		21d	1.234	1.020	8.628	8.945		
		28 d	0.860	0.962	-	8.906		
		42 d	0.863	0.939	-	8.817		
D2	s	0 h	1.673		5.363			
		24 h	1.564	1.611	5.341	5.359		
		2 d	1.503	1.571	5.337	5.357		
		4 d	1.429	1.517	5.308	5.346		
		7 d	0.583	1.443	5.261	5.329		

Г

Winter cereals (1 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	(g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		14 d	0.280	0.884	5.175	5.295		
		21d	0.242	0.674	5.063	5.255		
		28 d	0.248	0.595	-	5.225		
		42 d	0.224	0.541	-	5.170		
D3	d	0 h	1.584		0.789			
		24 h	0.818	1.252	0.661	0.768		
		2 d	0.135	0.834	0.527	0.718		
		4 d	0.011	0.438	0.39	0.616		
		7 d	0.003	0.253	0.302	0.512		
		14 d	0.001	0.127	0.219	0.390		
		21d	0.001	0.085	0.18	0.328		
		28 d	0.000	0.064	0.156	0.289		
		42 d	0.000	0.043	0.126	0.240		
D4	р	0 h	0.239		1.819			
		24 h	0.239	0.239	-	1.819		
		2 d	0.239	0.239	-	1.819		
		4 d	0.237	0.239	-	1.819		
		7 d	0.233	0.238	-	1.818		
		14 d	0.223	0.236	-	1.817		
		21 d	0.214	0.233	-	1.815		
		28 d	0.210	0.229	-	1.813		
		42 d	0.193	0.223	-	1.805		
D4	S	0 h	1.370		0.659			
		24 h	0.002	0.4	0.657	0.659		
		2 d	0.001	0.244	0.653	0.658		
		4 d	0.000	0.222	0.641	0.656		
		7 d	0.000	0.187	0.615	0.652		
		14 d	0.000	0.169	0.554	0.642		
		21 d	0.000	0.163	0.523	0.625		
		28 d	0.000	0.147	0.545	0.606		
		42 d	0	0.113	0.49	0.582		

Winter cereals (1 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/l	(g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D5	р	0 h	0.104		0.944			
		24 h	0.102	0.103	0.944	0.944		
		2 d	0.101	0.102	0.944	0.944		
		4 d	0.099	0.101	0.944	0.944		
		7 d	0.097	0.100	0.943	0.944		
		14 d	0.093	0.097	0.942	0.944		
		21 d	0.090	0.095	0.940	0.943		
		28 d	0.086	0.094	-	0.943		
		42 d	0.081	0.090	-	0.942		
D5	s	0 h	1.461		0.343			
		24 h	0.003	0.369	0.271	0.316		
		2 d	0.002	0.186	0.23	0.287		
		4 d	0.001	0.094	0.191	0.250		
		7 d	0.001	0.062	0.165	0.220		
		14 d	0.000	0.049	0.138	0.185		
		21 d	0.000	0.041	0.124	0.177		
		28 d	0.000	0.035	0.114	0.175		
		42 d	0.000	0.028	0.1	0.169		
D6	d	0 h	1.593		0.702			
		24 h	0.054	0.649	0.591	0.670		
		2 d	0.023	0.343	0.515	0.624		
		4 d	0.014	0.232	0.436	0.557		
		7 d	0.008	0.191	0.377	0.515		
		14 d	0.006	0.149	0.310	0.474		
		21 d	0.005	0.119	0.274	0.435		
		28 d	0.004	0.096	0.249	0.416		
		42 d	0.004	0.074	0.217	0.406		
R1	р	0 h	0.304		1.743			
		24 h	0.300	0.302	1.743	1.743		
		2 d	0.297	0.301	1.743	1.743		
		4 d	0.290	0.297	1.742	1.743		

Winter cereals (1 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	(g)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		7 d	0.282	0.293	1.741	1.743		
		14 d	0.263	0.283	1.736	1.742		
		21 d	0.247	0.274	1.731	1.741		
		28 d	0.235	0.266	1.723	1.740		
		42 d	0.215	0.265	1.700	1.736		
R1	s	0 h	2.716		1.382			
		24 h	0.006	1.445	1.157	1.302		
		2 d	0.003	0.725	1.036	1.22		
		4 d	0.008	0.363	1.027	1.109		
		7 d	0.003	0.325	0.859	1.042		
		14 d	0.053	0.227	0.714	0.973		
		21 d	0.000	0.18	0.635	0.939		
		28 d	0.000	0.141	0.723	0.883		
		42 d	0.000	0.106	0.578	0.838		
R3	S	0 h	2.605		1.241			
		24 h	0.011	1.404	0.983	1.154		
		2 d	0.005	0.708	0.834	1.053		
		4 d	2.249	0.356	0.689	0.919		
		7 d	0.003	0.365	0.583	0.866		
		14 d	0.001	0.214	0.465	0.743		
		21 d	0.000	0.143	0.402	0.655		
		28 d	0.000	0.107	0.359	0.594		
		42 d	0.000	0.072	0.300	0.512		
R4	S	0 h	3.548		1.654			
		24 h	0.028	2.557	1.151	1.481		
		2 d	0.006	1.285	0.903	1.296		
		4 d	0.006	0.877	1.043	1.208		
		7 d	0.001	0.502	0.75	1.081		
		14 d	0.000	0.251	0.547	0.864		
		21 d	0.000	0.178	0.460	0.745		
		28 d	0.690	0.164	1.094	0.688		

Winter cereals (1 x 250 g a.s/ha)								
FOCUS STEP 3 Scenario	Water body	Day after overall maximum	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$			
			Actual	TWA	Actual	TWA		
		42 d	0.000	0.118	0.527	0.686		

simulated period too short for calculation

Winter cereals (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{SW} (µg/L))	PEC _{SED} (µg/	/kg)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D1	d	0 h	3.684		19.27			
		24 h	3.606	3.666	19.26	19.27		
		2 d	3.627	3.636	19.25	19.26		
		4 d	3.572	3.622	19.2	19.26		
		7 d	3.459	3.595	19.08	19.25		
		14 d	3.172	3.480	18.63	19.19		
		21d	2.945	3.366	18.05	19.16		
		28 d	3.074	3.282	17.41	19.14		
		42 d	2.574	3.172	16.08	19.1		
D1	s	0 h	2.300		11.24			
		24 h	2.264	2.290	11.23	11.24		
		2 d	2.265	2.269	11.2	11.23		
		4 d	2.226	2.258	11.05	11.23		
		7 d	2.148	2.240	10.18	11.21		
		14 d	1.946	2.160	9.375	11.12		
		21d	1.753	2.080	9.207	10.96		
		28 d	1.901	2.017	7.945	10.75		
		42 d	1.145	1.945	6.76	10.35		
D2	d	0 h	4.208		18.29			
		24 h	2.527	2.948	18.26	18.28		
		2 d	4.036	2.605	18.18	18.26		
		4 d	1.776	2.501	18.12	18.21		
		7 d	1.759	2.331	17.93	18.15		
		14 d	1.413	2.19	17.58	18.04		
		21d	2.471	2.035	17.26	17.9		

		W	inter cereals (2	x 250 g a.s/ha)		
FOCUS	Water	Day after	PEC _{sw} (µg/L)		$PEC_{SED}(\mu g/kg)$	
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
		28 d	1.730	1.924	-	17.83
		42 d	1.740	1.879	-	17.66
D2	s	0 h	2.629		10.16	
		24 h	1.434	1.725	10.12	10.15
		2 d	2.462	1.655	10.11	10.15
		4 d	1.035	1.609	10.06	10.13
		7 d	1.020	1.55	9.971	10.1
		14 d	0.811	1.236	9.775	10.03
		21d	1.281	1.133	9.597	9.956
		28 d	1.039	1.112	-	9.895
		42 d	1.003	1.085	-	9.788
D3	d	0 h	1.386		0.927	
		24 h	0.808	1.128	0.813	0.909
		2 d	0.183	0.792	0.685	0.868
		4 d	0.015	0.426	0.543	0.773
		7 d	0.005	0.247	0.444	0.668
		14 d	0.002	0.125	0.341	0.537
		21d	0.001	0.156	0.288	0.466
		28 d	0.001	0.118	0.254	0.442
		42 d	0.000	0.079	0.209	0.394
D4	р	0 h	0.764		5.063	
		24 h	0.764	0.764	-	5.063
		2 d	0.762	0.764	-	5.062
		4 d	0.756	0.763	-	5.061
		7 d	0.744	0.761	-	5.06
		14 d	0.712	0.754	-	5.055
		21 d	0.681	0.744	-	5.048
		28 d	0.656	0.733	-	5.039
		42 d	0.598	0.710	-	5.014

Winter cereals (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	$PEC_{SED}(\mu g/kg)$		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
D4	s	0 h	1.185		1.944			
		24 h	0.002	0.829	1.939	1.944		
		2 d	0.001	0.768	1.926	1.942		
		4 d	0.000	0.714	1.888	1.938		
		7 d	0.000	0.627	1.811	1.928		
		14 d	0.000	0.576	1.628	1.899		
		21 d	0.000	0.541	1.515	1.850		
		28 d	0.000	0.484	1.528	1.793		
		42 d	0.000	0.369	1.363	1.704		
D5	р	0 h	0.208		2.070			
		24 h	0.208	0.208	2.070	2.070		
		2 d	0.207	0.208	2.070	2.070		
		4 d	0.205	0.208	2.069	2.070		
		7 d	0.202	0.207	2.069	2.070		
		14 d	0.200	0.204	2.066	2.069		
		21 d	0.192	0.203	-	2.069		
		28 d	0.183	0.201	-	2.068		
		42 d	0.169	0.196	-	2.063		
D5	s	0 h	1.278		0.569			
		24 h	0.009	0.492	0.48	0.541		
		2 d	0.002	0.248	0.425	0.505		
		4 d	0.001	0.167	0.372	0.457		
		7 d	0	0.159	0.335	0.453		
		14 d	0	0.127	0.293	0.444		
		21 d	0	0.106	0.268	0.435		
		28 d	0	0.091	0.25	0.43		
		42 d	0	0.074	0.222	0.416		
D6	d	0 h	1.416		1.466			
		24 h	0.066	1.269	1.376	1.455		
		2 d	0.035	1.106	1.238	1.426		
		4 d	0.022	0.729	1.038	1.340		

Winter cereals (2 x 250 g a.s/ha)								
FOCUS	Water	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/k	PEC _{SED} (µg/kg)		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA		
		7 d	0.013	0.443	0.883	1.213		
		14 d	0.010	0.316	0.72	1.026		
		21 d	0.042	0.232	0.629	0.917		
		28 d	0.016	0.182	0.569	0.842		
		42 d	0.008	0.168	0.482	0.814		
R1	р	0 h	0.549		3.103			
		24 h	0.539	0.544	3.103	3.103		
		2 d	0.531	0.539	3.103	3.103		
		4 d	0.518	0.532	3.102	3.103		
		7 d	0.500	0.522	3.099	3.103		
		14 d	0.466	0.503	3.09	3.102		
		21 d	0.436	0.486	3.087	3.100		
		28 d	0.422	0.473	3.077	3.098		
		42 d	0.408	0.45	3.048	3.094		
R1	S	0 h	3.042		3.320			
		24 h	0.052	2.416	2.786	3.137		
		2 d	0.006	1.218	2.516	2.935		
		4 d	0.002	0.611	2.255	2.681		
		7 d	0.001	0.35	2.056	2.466		
		14 d	0.000	0.227	1.799	2.201		
		21 d	0.000	0.18	1.633	2.042		
		28 d	0.001	0.16	1.693	1.986		
		42 d	0.002	0.153	1.662	1.857		
R3	s	0 h	2.605		1.233			
		24 h	0.011	1.404	0.975	1.146		
		2 d	0.005	0.708	0.827	1.045		
		4 d	2.249	0.356	0.682	0.911		
		7 d	0.003	0.365	0.741	0.857		
		14 d	0.001	0.218	0.531	0.794		
		21 d	0.000	0.163	0.449	0.713		
		28 d	0.000	0.123	0.397	0.649		

Winter cereals (2 x 250 g a.s/ha)							
FOCUS	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
STEP 3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA	
		42 d	0.000	0.082	0.329	0.561	
R4	s	0 h	4.585		4.215		
		24 h	3.192	4.498	3.279	4.032	
		2 d	0.021	3.069	2.805	3.726	
		4 d	0.005	1.54	2.365	3.257	
		7 d	0.002	0.881	2.056	2.852	
		14 d	0.001	0.454	1.711	2.386	
		21 d	0.000	0.303	1.516	2.138	
		28 d	1.471	0.294	1.814	1.972	
		42 d	0.000	0.236	1.298	1.817	

⁻ simulated period too short for calculation

Metabolite R401553	Molecular weight: 213.2		
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 560		
	Soil or water metabolite: soil + water metabolite		
	Kfoc/ (L/kg): 188		
	DT_{50} soil (d): 1.1 days		
	DT ₅₀ water/sediment system (d): 1000		
	DT ₅₀ water (d): 1000		
	DT ₅₀ sediment (d): 1000		
	Crop interception (%):		
	Brassicae: average crop cover (40 %)		
	Cereals: full canopy (70 %)		
	Maximum occurrence observed (% molar basis with respect to the parent)		
	Water/Sediment: 8.9%		
Parameters used in FOCUSsw step 3 (if performed)	Not performed		

Application rate

Crop: Brassica Number of applications: 2 Interval (d): 12 Application rate(s): 250 g as/ha Depth of water body: 30 cm (STEP 1 and 2) Application window: March to May

Crop: Wheat Number of applications: 2 Interval (d): 14 Application rate(s): 250 g as/ha Depth of water body: 30 cm (STEP 1 and 2) Application window: March to May

FOCUS	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
STEP 1 Scenario	overall maximum	Actual	TWA	Actual	TWA
	Oh	12.19		22.51	
	24h	12.14	12.16	22.82	22.66
	2d	12.13	12.15	22.80	22.74
	4d	12.11	12.14	22.77	22.76
	7d	12.09	12.12	22.72	22.76
	14d	12.03	12.09	22.61	22.71
	21d	11.97	12.06	22.50	22.66
	28d	11.91	12.03	22.40	22.61
	42d	11.80	11.97	22.18	22.50

Brassica (2 x 250 g a.s/ha)							
FOCUS STEP 2 Scenario	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)			
	overall maximum	Actual	TWA	Actual	TWA		
Northern EU	0 h	0.220		0.394			
	24 h	0.209	0.215	0.393	0.394		
	2 d	0.209	0.212	0.393	0.393		
	4 d	0.209	0.211	0.393	0.393		
	7 d	0.209	0.210	0.392	0.392		
	14 d	0.208	0.209	0.390	0.392		

Brassica (2 x 250 g a.s/ha)							
FOCUS STEP	Day after	PEC _{sw} (µg/	L)	PEC _{SED} (µg/	(kg)		
2 Scenario	overall maximum	Actual	TWA	Actual	TWA		
	21 d	0.207	0.208	0.388	0.391		
	28 d	0.206	0.208	0.386	0.390		
	42 d	0.204	0.207	0.382	0.388		
Southern EU	0 h	0.278		0.502			
	24 h	0.267	0.273	0.502	0.502		
	2 d	0.267	0.270	0.502	0.502		
	4 d	0.267	0.268	0.501	0.502		
	7 d	0.266	0.268	0.500	0.501		
	14 d	0.265	0.267	0.498	0.500		
	21 d	0.264	0.266	0.495	0.499		
	28 d	0.262	0.265	0.493	0.498		
	42 d	0.260	0.264	0.488	0.495		

Cereals (2 x 250 g a.s/ha)							
FOCUS STEP 2 Scenario	Day after	PEC _{sw} (µg/l	L)	PEC _{SED} (µg/	kg)		
	overall maximum	Actual	TWA	Actual	TWA		
Northern	0 h	0.191		0.339			
EU	24 h	0.180	0.186	0.339	0.339		
	2 d	0.180	0.183	0.339	0.339		
	4 d	0.180	0.182	0.338	0.339		
	7 d	0.180	0.181	0.338	0.338		
	14 d	0.179	0.180	0.336	0.338		
	21 d	0.178	0.180	0.334	0.337		
	28 d	0.177	0.179	0.333	0.336		
	42 d	0.175	0.178	0.330	0.334		
Southern	0 h	0.220		0.394			
EU	24 h	0.209	0.215	0.393	0.393		
	2 d	0.209	0.212	0.393	0.393		
	4 d	0.209	0.211	0.392	0.393		

Cereals (2 x 250 g a.s/ha)							
FOCUS STEP 2 Scenario	Day after	PEC _{SW} (µg/I	L)	PEC _{SED} (µg/	PEC _{SED} (µg/kg)		
	overall maximum	Actual	TWA	Actual	TWA		
	7 d	0.208	0.210	0.392	0.393		
	14 d	0.207	0.209	0.390	0.392		
	21 d	0.206	0.208	0.388	0.391		
	28 d	0.205	0.208	0.386	0.390		
	42 d	0.203	0.207	0.382	0.388		

Metabolite R402173

Metabolite R402173	Molecular weight: 333.3
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 61
	Soil or water metabolite: soil + water metabolite
	Kfoc/ (L/kg): 25 (for water)
	200 (for sediment)
	(As adsorption of R402173 is pH dependent, a worst-case approach was taken using the lowest Kfoc for the surface water PEC calculation and the highest Kfoc for sediment PEC calculation).
	DT_{50} soil (d): 4.7 days
	DT ₅₀ water/sediment system (d): 1000
	DT ₅₀ water (d): 1000
	DT ₅₀ sediment (d): 1000
	Crop interception (%):
	Brassicae: average crop cover (40 %)
	Cereals: full canopy (70 %)
	Maximum occurrence observed (% molar basis with respect to the parent)
	Water/Sediment: 2.4%
Parameters used in FOCUSsw step 3 (if	Not performed

performed)

Application rate

Crop: Brassica Number of applications: 2 Interval (d): 12 Application rate(s): 250 g as/ha Depth of water body: 30 cm (STEP 1 and 2) Application window: March to May

Crop: Wheat Number of applications: 2 Interval (d): 14 Application rate(s): 250 g as/ha Depth of water body: 30 cm (STEP 1 and 2) Application window: March to May

FOCUS STEP 1 Scenario	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
	overall maximum	Actual	TWA	Actual	TWA
	Oh	22.75		36.96	
	24h	22.73	22.74	37.08	37.02
	2d	22.71	22.73	37.06	37.00
	4d	22.68	22.71	37.00	37.00
	7d	22.63	22.69	36.93	37.00
	14d	22.52	22.63	36.75	36.92
	21d	22.41	22.58	36.57	36.83
	28d	22.31	22.52	36.39	36.75
	42d	22.09	22.42	36.04	36.57

Brassica (2 x 250 g a.s/ha)							
FOCUS	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)			
STEP 2	overall maximum	Actual	TWA	Actual	TWA		
	0.1	0.050		1.564			
Northern EU	0 h	0.960		1.564			
	24 h	0.959	0.960	1.563	1.564		
	2 d	0.958	0.959	1.562	1.563		
	4 d	0.957	0.958	1.560	1.562		
	7 d	0.955	0.957	1.557	1.560		
	14 d	0.950	0.955	1.549	1.557		
	21 d	0.946	0.952	1.542	1.553		

Brassica (2 x 250 g a.s/ha)							
FOCUS	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)			
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA		
	28 d	0.941	0.950	1.534	1.549		
	42 d	0.932	0.946	1.519	1.542		
Southern EU	0 h	1.842		3.002			
	24 h	1.840	1.841	3.000	3.001		
	2 d	1.839	1.840	2.998	3.000		
	4 d	1.836	1.839	2.994	2.998		
	7 d	1.832	1.837	2.988	2.995		
	14 d	1.824	1.832	2.973	2.988		
	21 d	1.815	1.828	2.959	2.980		
	28 d	1.806	1.824	2.945	2.973		
	42 d	1.789	1.815	2.916	2.959		

Cereals (2 x 250 g a.s/ha)						
FOCUS	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA	
Northern EU	0 h	0.503		0.818		
	24 h	0.502	0.502	0.818	0.818	
	2 d	0.501	0.502	0.817	0.818	
	4 d	0.501	0.501	0.816	0.817	
	7 d	0.500	0.501	0.815	0.816	
	14 d	0.497	0.500	0.811	0.815	
	21 d	0.495	0.498	0.807	0.813	
	28 d	0.492	0.497	0.803	0.811	
	42 d	0.488	0.495	0.795	0.807	
Southern EU	0 h	0.927		1.511		
	24 h	0.926	0.927	1.510	1.510	
	2 d	0.925	0.926	1.509	1.510	
	4 d	0.924	0.925	1.507	1.509	
	7 d	0.922	0.924	1.503	1.507	
	14 d	0.918	0.922	1.496	1.503	

Г

Cereals (2 x 250 g a.s/ha)					
FOCUS	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
STEP 2overallScenariomaximu	overall maximum	Actual	TWA	Actual	TWA
	21 d	0.913	0.920	1.489	1.500
	28 d	0.909	0.918	1.482	1.496
	42 d	0.900	0.913	1.467	1.489

Metabolite R234886	Molecular weight: 389.4
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 57
	Soil or water metabolite: soil + water metabolite
	Kfoc/ (L/kg): 21 (for water)
	490 (for sediment)
	(As adsorption of R234886 is pH dependent, a worst-case approach was taken using the lowest Kfoc for the surface water PEC calculation and the highest Kfoc for sediment PEC calculation).
	DT_{50} soil (d): 112.1 days (note the correct DT_{50} soil to be used for conservative 1 st tier modelling is 110.4 d)
	DT50 water/sediment system (d): 1000
	DT ₅₀ water (d): 1000
	DT_{50} sediment (d): 1000
	Crop interception (%):
	Brassicae: average crop cover (40 %)
	Cereals: full canopy (70 %)
	Maximum occurrence observed (% molar basis with respect to the parent)
	Water/Sediment: 17.7% ^a (whole system)
Parameters used in FOCUSsw step 3 (if performed)	Not performed

٦

Application rate(s): 250 g as/ha

Application window: March to May

Application rate

Crop: Brassica Number of applications: 2 Interval (d): 12 Application rate(s): 250 g as/ha Depth of water body: 30 cm (STEP 1 and 2) Application window: March to May Crop: Wheat Number of applications: 2 Interval (d): 14

Depth of water body: 30 cm (STEP 1 and 2)

^a: note that the correct maximum occurrence level of this metabolite was agreed to be 18.1% AR (derived by calculating the individual mean for each of 3 label positions from data from 3 TLC solvent systems prior to calculating an overall mean)

FOCUS	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
STEP 1 Scenario	overall maximum	Actual	TWA	Actual	TWA
	0h	45.86		137.3	
	24h	45.80	45.83	139.6	138.4
	2d	45.77	45.81	139.5	139.0
	4d	45.71	45.78	139.3	139.2
	7d	45.61	45.73	139.0	139.1
	14d	45.39	45.62	138.3	138.9
	21d	45.17	45.50	137.6	138.6
	28d	44.96	45.39	137.0	138.3
	42d	44.52	45.18	135.6	137.6

Brassicas (2 x 250 g a.s)							
FOCUS STEP 2 Scenario	Day after overall maximum	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)			
		Actual	TWA	Actual	TWA		
Northern EU	0 h	5.765		17.53			
	24 h	5.755	5.760	17.52	17.53		
	2 d	5.751	5.756	17.51	17.52		
	4 d	5.743	5.751	17.49	17.51		
	7 d	5.731	5.745	17.45	17.49		
	14 d	5.703	5.731	17.36	17.45		

Brassicas (2 x 250 g a.s)						
FOCUS	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA	
	21 d	5.675	5.717	17.28	17.41	
	28 d	5.648	5.703	17.20	17.36	
	42 d	5.593	5.676	17.03	17.28	
Southern	0 h	10.85		33.02		
EU	24 h	10.84	10.8	33.00	33.01	
	2 d	10.83	10.84	32.98	33.00	
	4 d	10.82	10.83	32.93	32.98	
	7 d	10.79	10.82	32.86	32.94	
	14 d	10.74	10.79	32.70	32.86	
	21 d	10.69	10.77	32.55	32.78	
	28 d	10.64	10.74	32.39	32.70	
	42 d	10.54	10.69	32.08	32.55	

	Cereals (2 x 250 g a.s/ha)					
FOCUS	Day after	PEC _{sw} (µg/	L)	PEC _{SED} (µg/	$C_{SED}(\mu g/kg)$	
STEP 2 Scenario	overall maximum	Actual	TWA	Actual	TWA	
Northern	0 h	3.205		9.740		
EU	24 h	3.197	3.201	9.733	9.737	
	2 d	3.195	3.198	9.726	9.733	
	4 d	3.190	3.195	9.713	9.726	
	7 d	3.184	3.192	9.693	9.716	
	14 d	3.168	3.184	9.646	9.693	
	21 d	3.153	3.176	9.599	9.669	
	28 d	3.138	3.168	9.553	9.646	
	42 d	3.107	3.153	9.460	9.600	
Southern	0 h	5.734		17.44		
EU	24 h	5.724	5.729	17.43	17.43	
	2 d	5.720	5.726	17.42	17.43	
	4 d	5.712	5.721	17.39	17.42	
	7 d	5.700	5.715	17.35	17.40	
	14 d	5.673	5.701	17.27	17.36	

Cereals (2 x 250 g a.s/ha)						
FOCUS STEP 2 Scenario	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
	overall Actual maximum	Actual	TWA	Actual	TWA	
	21 d	5.645	5.687	17.19	17.31	
	28 d	5.618	5.673	17.10	17.27	
	42 d	5.564	5.646	16.94	17.19	

PEC (ground water) (Annex IIIA, point 9.2.1)

Method of calculation and type of study (e.g.	For FOCUS gw modelling, values used –
modelling, field leaching, lysimeter)	Modelling using FOCUS model(s), with
	appropriate FOCUSgw scenarios, according to
	FOCUS guidance.
	Model(s) used: FOCUS-PELMO 3.3.2, FOCUS- PEARL 3.3.3
	Scenarios (list of names): Châteaudun, Hamburg, Jokionen, Kremsmünster, Okehampton, Piacenza, Porto, Sevilla, Thiva
	Crop: brasicae, winter cereals, spring cereals Geometric mean parent $DT_{50field}$ 78 d (the geometric mean of the soil incorporated field studies (80.2 days) and the slow phase of the soil non- incorporated studies (75.9 days))
	(microbial) DT ₅₀₅₋₁₄ 3 d (photolysis) (normalisation
	to 10 kPa or pF2, 20 °C with Q10 of 2.58).
	K_{foc} : parent, arithmetic mean $427^{\#}$, $1/n = 0.86$.
	Metabolites:
	R401553
	Geometric mean DT _{50lab} 1.1 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58).
	Formation fraction from parent = 0.392
	Formation fraction from $R402173 = 0.468$
	K_{fOC} : arithmetic mean 188, $^{1}/_{n}$ = 0.85.
	R402173
	Geometric mean DT_{50lab} 4.7 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58).
	Formation fraction from parent $= 0.385$
	K_{foc} : worst case 25, $1/n = 0.96$.
	R234886
	Geometric mean DT_{50lab} 112.1 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58) (note the correct DT_{50} soil to be used for conservative 1 st tier

	modelling is 110.4 d)
	Formation fraction from parent = 0.874 .
	$K_{\text{foc:}}$ worst case 21, $^{1}/_{n} = 0.76$
	K_{foc} : scenario specific Kfoc, $^{1}/_{n}$ = 0.85.
	Scenario specific Kfoc for R234886.
	Châteaudun = 24
	Hamburg $= 133$
	Jokioinen = 159
	Kremsmünster = 38
	Okehampton = 242
	Piacenza = 68
	Porto = 624
	Sevilla = 50
	Thiva = 38
Application rate	Application rate: 250 g/ha. No. of applications: 2 Time of application (month or season): March – September
#	

[#] = Whilst a Kfoc of 427 was accepted for use in the modelling the correct mean Kfoc was 423 L/kg.

PE	Scenario	Parent		Metabolite (µg/L)		
LM		(µg/L)	R401553	R402173	R234886	
V C	Châteaudun	< 0.001	< 0.001	< 0.001	16.9400	
ora	Hamburg	< 0.001	< 0.001	< 0.001	1.4070	
SSIC	Jokioinen	< 0.001	< 0.001	< 0.001	0.0010	
ae	Kremsmünster	< 0.001	< 0.001	< 0.001	12.3380	
	Porto	< 0.001	< 0.001	< 0.001	0.0000	
	Sevilla	< 0.001	< 0.001	< 0.001	0.0000	
	Thiva	< 0.001	< 0.001	< 0.001	5.0320	
PELMO	Châteaudun	< 0.001	< 0.001	< 0.001	8.6490	
/winter	Hamburg	< 0.001	< 0.001	< 0.001	0.6570	
cereals	Jokioinen	< 0.001	< 0.001	< 0.001	0.0050	
	Kremsmünster	< 0.001	< 0.001	< 0.001	6.3880	
	Okehampton	< 0.001	< 0.001	< 0.001	0.0290	
	Piacenza	< 0.001	< 0.001	< 0.001	4.3320	
	Porto	< 0.001	< 0.001	< 0.001	0.0000	
	Sevilla	< 0.001	< 0.001	< 0.001	0.0420	
	Thiva	< 0.001	< 0.001	< 0.001	3.6920	
PELMO	Châteaudun	< 0.001	< 0.001	< 0.001	7.5350	
/spring	Hamburg	< 0.001	< 0.001	< 0.001	0.4900	
cereals	Jokioinen	< 0.001	< 0.001	< 0.001	0.0000	
	Kremsmünster	< 0.001	< 0.001	< 0.001	5.8520	

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

 Okehampton	< 0.001	< 0.001	< 0.001	0.0050
Porto	< 0.001	< 0.001	< 0.001	0.0000

PE	Scenario	Parent	Metabolite (µg/L))	
ARI		(µg/L)	R401553	R402173	R234886
bi	Châteaudun	< 0.001	< 0.001	0.0002	21.9240
ass.	Hamburg	< 0.001	< 0.001	0.0005	2.8653
sica	Jokioinen	< 0.001	< 0.001	0.0011	0.3354
ю́	Kremsmünster	< 0.001	< 0.001	0.0002	14.9838
	Porto	< 0.001	< 0.001	< 0.001	0.0000
	Sevilla	< 0.001	< 0.001	0.0001	6.1281
	Thiva	< 0.001	< 0.001	0.0036	12.5173
PEARL	Châteaudun	< 0.001	< 0.001	< 0.001	10.8240
/winter	Hamburg	< 0.001	< 0.001	0.0004	1.1657
cereals	Jokioinen	< 0.001	< 0.001	0.0001	0.0851
	Kremsmünster	< 0.001	< 0.001	0.0003	6.8948
	Okehampton	< 0.001	< 0.001	0.0008	0.1173
	Piacenza	< 0.001	< 0.001	0.0001	4.2226
	Porto	< 0.001	< 0.001	< 0.001	0.0000
	Sevilla	< 0.001	< 0.001	< 0.001	1.6584
	Thiva	< 0.001	< 0.001	< 0.001	6.9287
PEARL	Châteaudun	< 0.001	< 0.001	< 0.001	10.6130
/spring	Hamburg	< 0.001	< 0.001	0.0004	1.2242
cereals	Jokioinen	< 0.001	< 0.001	0.0002	0.0811
	Kremsmünster	< 0.001	< 0.001	0.0002	6.9973
	Okehampton	< 0.001	< 0.001	0.0004	0.0997
	Porto	< 0.001	<0.001	< 0.001	0.0000

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡	Not studied - no data requested
Quantum yield of direct phototransformation	Not studied - no data requested
Photochemical oxidative degradation in air ‡	DT_{50} of 2.7 hours derived by the Atkinson model (AOPWIN version 1.8). OH (12h) concentration assumed = 1.5×10^6 cm ⁻³
Volatilisation ‡	No significant tendency for volatilisation was observed from soil and bean leaf surfaces up to 24 hours after the application of radiolabelled azoxystrobin (dose rates: 264 or 291 g as/ha).
Metabolites	None
PEC (air)	

Method of calculation

Expert judgement, based on vapour pressure, dimensionless Henry's Law Constant and information on volatilisation from plants and soil.

PEC_(a)

Maximum concentration

Assumed to be negligible

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology). Soil: Azoxystrobin, R234886, R402173, R401553 Surface water: Azoxystrobin, R234886, R402173, R401553 Sediment: Azoxystrobin, R234886, R402173, R401553 Ground water: Azoxystrobin, R234886, R402173, R401553 Air: Azoxystrobin

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)	No data submitted
Surface water (indicate location and type of study)	No data submitted
Ground water (indicate location and type of study)	No data submitted
Air (indicate location and type of study)	No data submitted

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Candidate for R53

Ecotoxicology

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point (mg/kg bw/day)	End point (mg/kg feed)
Birds ‡				
Bobwhite quail	a.s.	Acute	>2000	
Bobwhite quail	a.s.	Short-term	>5200	>1179
Bobwhite quail	a.s.	Long-term	1200	117
Mammals ‡				
Rat	a.s.	Acute	>5000	n.r.
Rat	a.s.	Long-term	32	300

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Brassicas at 2 x 250 g a.s./ha

Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger
Tier 1 (Birds)				
Medium herbivorous bird	Acute	21.5	>93	10
Small insectivorous bird	Acute	13.5	>148	10
Medium herbivorous bird	Short-term	11.4	>103	10
Small insectivorous bird	Short-term	7.5	>157	10
Medium herbivorous bird	Long-term	6.0	20	5
Small insectivorous bird	Long-term	7.5	16	5
Tier 1 (Mammals)				
Medium herbivorous mammal	Acute	7.92	>631	10
Medium herbivorous mammal	Long-term	2.23	14	5

Late cereals at 2 x 250 g a.s./ha

Indicator species/Category1	Time scale	ETE	TER	Annex VI Trigger
Tier 1 (Birds)				
Small insectivorous bird	Acute	13.5	>148	10
Small insectivorous bird	Short-term	7.5	>157	10
Small insectivorous bird	Long-term	7.5	16	5
Tier 1 (Mammals)				
Insectivorous mammal	Acute	2.21	>2262	10

Indicator species/Category1	Time scale	ETE	TER	Annex VI Trigger
Insectivorous mammal	Long-term	0.80	40	5

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time- scale (Test type)	End point	Toxicity (mg/L)
Laboratory tests				
Fish				
Oncorhynchus mykiss	250 SC	96 hr (flow- through)	Mortality, EC ₅₀	0.28 (n)
Oncorhynchus mykiss	a.s.	96 hr (flow- through)	Mortality, EC ₅₀	0.47 ^a (m)
Lepomis macrochirus	a.s.	96 hr (flow- through)	Mortality, EC ₅₀	1.1 ^b (m)
Pimephales promelas	a.s.	33 day (flow- through)	Growth NOEC	0.147 ^b (m)
Oncorhynchus mykiss	R234886	96 hr (flow- through)	Mortality, EC ₅₀	>150 ^b (m)
Oncorhynchus mykiss	R401553	96 hr (static)	Mortality, EC ₅₀	>120 ^c (n)
Oncorhynchus mykiss	R402173	96 hr (static)	Mortality, EC ₅₀	62 ^c (n)
Aquatic invertebrate				
Daphnia magna	250 SC	48 h (static)	Mortality, EC ₅₀	0.11 ^a (n)
Daphnia magna	a.s.	48 h (static)	Mortality, EC ₅₀	0.23 ^b (m)
Macrocyclops fuscus	a.s.	48 h (static)	Mortality, EC ₅₀	0.13 ^a (n)
Daphnia magna	a.s.	21 d (static)	Reproduction, NOEC	0.044 ^b (m)
Mysidopsis bahia	a.s.	96 h (static)	Mortality	0.055 ^c (n)

Mysidopsis bahia	<i>ia</i> a.s. 48 h Mortality		0.068°	
		(static)		(n)
Mysidopsis bahia	a.s.	28-day	Reproduction (endpoint is based on adult mortality)	0.00954 ^e (mm)
Crassostrea gigas	a.s.	48 hr (static)	Mortality, EC ₅₀	1.3 ^c (n)
Daphnia magna	R234886	48 h (static)	Mortality, EC ₅₀	>180 ^b (n)
Daphnia magna	R401553	48 h (static)	Mortality, EC ₅₀	>120 ^c (n)
Daphnia magna	R402173	48 h (static)	Mortality, EC ₅₀	>100 ^c (n)
Sediment dwelling organ	isms			
Chironomus riparius	a.s.	28 d (static)	NOEC	0.8 ^a
Algae				
Selenastrum capricornutum	250 SC	72 h (static)	EC ₅₀	0.16 ^a (n)
Selenastrum capricornutum	a.s.	72 h (static)	EC ₅₀	0.36 ^a (m)
Skeletonema costatum	a.s.	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	0.098 ^c 0.3 ^c (n)
Navicula pelliculosa	a.s.	120 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	0.014 ^c 0.146 ^c (n)
Anabaena flos-aquae	a.s.	120 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	9.5 ^c 13.9 ^c (m)
Selenastrum capricornutum	R234886	72 h (static)	EC ₅₀	47.0 ^b (m)
Selenastrum capricornutum	R402173	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	67 ^c 67 ^c (n)
Selenastrum capricornutum	R401553	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	>120 ^c >120 ^c (n)

Higher plant				
Lemna gibba	a.s.	14 d	Dry weight, EC ₅₀	>6.4 ^c
		(static)	Fronds, EC_{50}	3.2 °
				(n)
Magaaagm				
		11 1 /	1 '4	• • • •
and abundance of spec concentrations were only study. Species/groups w	considered to be a v cies. It should be a y measured 21 hour ere present in suffici	well-conducted noted that az is after application ient numbers t	a mesocosm with an ap oxystrobin was only a tion and not throughou o allow appropriate stat	propriate diversity applied once, and t the course of the istical analysis.
The Notifier proposed th 10 µg/L. No uncertainty	at the no observed e or assessment factor	ecologically ac r was proposed	lverse effects concentra 1.	tion (NOEAEC) is
From the s concentration effects at 10 in the followi	ummary above it is, hence it is not p µg/L were considere ng parameters:	can be con possible to es ed to be relativ	cluded that there we tablish a NOEC. The rely short-lived and rest	ere effects at all treatment related ricted to decreases
Daph Total Cope Cope	nia spp – effects at cladocera – effects poda nauplii – effec poda Cyclopoid cor	10 μg/L were at 10 μg/L we ets at day 35 penodites – eff	noted at 3, 7 and 14 day re noted at 3, 7 and 14 d	vs lays oted at days 7 and
10,	ροάα Ογειοροία ευρ	epounes en	leets at 10 µg/L were h	oted at days 7 and
Cope Spha nets, Total	<i>poda Cyclopoid</i> adu <i>eriidae</i> – significant there were significant mollusc – in sample	lts – effects w tly fewer on o ntly fewer on o es collected vi	ere noted on day 3 only lays 72 and 93 for san days 22, 30 44 and 72. a nets were lower on da	nples collected via ys 22 and 72
Total	macroinvertebrates	– in sample c	ollected via nets were lo	ower on day 30.
The following	g groups increased a	and were proba	bly the result of indirec	t effects:
Chyd Pomp Testu days Total 3, 35	orus – significantly pholyx sp – significand vdinella sp – there we 42 and 35. rotifer – there were 42 and 56.	greater numbe ntly greater nu were significa e significantly	ers on study day 10 and imbers than the control ntly greater numbers th greater numbers than t	28 on day 14 only nan the control on he control on days
It should however be not 21 hours after application the initial nominal conce	ed that there was on n; due to this it is pro- entrations.	ly one applica oposed that the	tion and there was only e effect concentrations s	chemical analysis should be based on
^a Agreed endpoint	_			
^v Taken from original DA	R			
Submitted with this appli n = nominal	ication			
m = measured				

mm = mean measured

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Step1

Cereals and brassica at 2 x 250 g a.s./ha

Test substance	nce Organism Toxicity Time PE- endpoint scale (mg (mg a.s./L)		PEC _i (mg a.s./L)	PEC _{twa}	TER	Annex VI Trigger	
a.s.	Fish (Oncorhynchus mykiss)	0.47	Acute	0.1108	n.r.	<u>4.2</u>	100
'250 SC'	Fish (Oncorhynchus mykiss)	0.28	Acute	0.1108	n.r.	<u>2.5</u>	100
a.s.	Fish (Pimephales promelas)	0.147	Chronic	0.1108	n.r.	<u>1.3</u>	10
a.s.	Aquatic invertebrates (Daphnia magna)	0.23	Acute	0.1108	n.r.	<u>2.1</u>	100
`250 SC'	Aquatic invertebrates (Daphnia magna)	0.11	Acute	0.1108	n.r.	<u>1.0</u>	100
a.s.	Sediment- dwelling organisms (<i>Chironomus</i> <i>riparius</i>)	0.8	Chronic	0.1108	n.r.	7.2	10
a.s.	Aquatic invertebrates (Macrocyclops fuscus)	0.13	Acute	0.1108	n.r.	<u>1.2</u>	100
a.s.	Aquatic invertebrates (Mysidopsis bahia)		Acute	0.1108	n.r.	<u>0.5</u>	100
a.s.	Aquatic invertebrates (Daphnia magna)	0.044	Chronic	0.1108	n.r.	<u>0.4</u>	10
a.s.	Aquatic invertebrates (Mysidopsis bahia)	0.00954	Chronic	0.1108	n.r.	<u>0.09</u>	10
a.s.	Algae (Selenastrum capricornutum)	0.014	Chronic	0.1108	n.r.	<u>0.1</u>	10

Test substance	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	PEC _{twa}	TER	Annex VI Trigger
'250 SC'	Algae (Selenastrum capricornutum)	0.16	Chronic	0.1108	n.r.	<u>1.4</u>	10
a.s.	Higher plants (<i>Lemna gibba</i>)	3.2	Chronic	0.1108	n.r.	28	10
Metabolite R234886	Fish (Oncorhynchus mykiss)	>150	Acute	0.046	n.r.	>3261	100
Metabolite R234886	Aquatic invertebrates (Daphnia magna)	>180	Acute	0.046	n.r.	>3913	100
Metabolite R234886	Algae (Selenastrum capricornutum)	47.0	Chronic	0.046	n.r.	1022	10
Metabolite R401553	Fish (Oncorhynchus mykiss)	>120	Acute	0.012	n.r.	>10000	100
Metabolite R401553	Aquatic invertebrates (Daphnia magna)	>120	Acute	0.012	n.r.	>10000	100
Metabolite R401553	Algae (Selenastrum capricornutum)	>120	Chronic	0.012	n.r.	>10000	10
Metabolite R402173	Fish (Oncorhynchus mykiss)	62	Acute	0.023	n.r.	2696	100
Metabolite R402173	Aquatic invertebrates (Daphnia magna)	>100	Acute	0.023	n.r.	>4348	100
Metabolite R402173	Algae (Selenastrum capricornutum)	67	Chronic	0.023	n.r.	2913	10

FOCUS Step 2

TER for aquatic organisms at FOCUS Step 2 assuming application to brassicae in NMS (for details see Table B.8.6.4)

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
-------------------	-----	----------	--	---------------	------------------------------------	-----	------------------------

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
a.s.	N	Fish (Oncorhynchus mykiss)	0.47	Acute	0.0146	<u>32</u>	100
'250 SC'	N	Fish (Oncorhynchus mykiss)	0.28	Acute	0.0146	<u>19</u>	100
a.s.	N	Fish (Pimephales promelas)	0.147	Chronic	0.0146	10	10
a.s.	N	Aquatic invertebrates (<i>Daphnia magna</i>)	0.23	Acute	0.0146	<u>16</u>	100
'250 SC'	N	Aquatic invertebrates (Daphnia magna)	0.11	Acute	0.0146	<u>7.5</u>	100
a.s.	N	Sediment-dwelling organisms (<i>Chironomus</i> <i>riparius</i>)	0.8	Chronic	0.0146	55	10
a.s.	N	Aquatic invertebrates (<i>Macrocyclops</i> <i>fuscus</i>)	0.13	Acute	0.0146	<u>8.9</u>	100
a.s.	Ν	Aquatic invertebrates (<i>Mysidopsis bahia</i>)	0.055	Acute	0.0146	<u>3.8</u>	100
a.s.	N	Aquatic invertebrates (Daphnia magna)	0.044	Chronic	0.0146	<u>3.0</u>	10
a.s.	N	Aquatic invertebrates (<i>Mysidopsis bahia</i>)	0.00954	Chronic	0.0146	<u>0.6</u>	10
a.s.	Ν	Algae (Navicula pelliculosa)	0.014	Chronic	0.0146	1.0	10
'250 SC'	N	Algae (Selenastrum capricornutum)	0.16	Chronic	0.0146	11	10

TER for aquatic organisms at FOCUS Step 2 assuming application to winter cereals in NMS (for details see Table B.8.6.5)

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
a.s.	N	Fish (Oncorhynchus mykiss)	0.47	Acute	0.0087	<u>54</u>	100
'250 SC'	N	Fish (Oncorhynchus mykiss)	0.28	Acute	0.0087	<u>32</u>	100
a.s.	N	Fish (Pimephales promelas)	0.147	Chronic	0.0087	17	10

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
a.s.	N	Aquatic invertebrates (Daphnia magna)	0.23	Acute	0.0087	<u>26</u>	100
'250 SC'	N	Aquatic invertebrates (Daphnia magna)	0.11	Acute	0.0087	<u>13</u>	100
a.s.	N	Sediment-dwelling organisms (<i>Chironomus</i> <i>riparius</i>)	0.8	Chronic	0.0087	92	10
a.s.	N	Aquatic invertebrates (<i>Macrocyclops</i> <i>fuscus</i>)	0.13	Acute	0.0087	<u>15</u>	100
a.s.	N	Aquatic invertebrates (Mysidopsis bahia)	0.055	Acute	0.0087	<u>6.3</u>	100
a.s.	N	Aquatic invertebrates (Daphnia magna)	0.044	Chronic	0.0087	<u>5.1</u>	10
a.s.	N	Aquatic invertebrates (Mysidopsis bahia)	0.00954	Chronic	0.0087	<u>1.1</u>	10
a.s.	N	Algae (Navicula pelliculosa)	0.014	Chronic	0.0087	<u>1.6</u>	10
'250 SC'	N	Algae (Selenastrum capricornutum)	0.16	Chronic	0.0087	18	10

TERs for aquatic organisms at FOCUS Step 2 assuming application to Brassicae in SMS (for details see Table B.8.6.6)

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
a.s.	N	Fish (<i>Oncorhynchus mykiss</i>)	0.47	Acute	0.0263	<u>18</u>	100
`250 SC'	N	Fish (Oncorhynchus mykiss)	0.28	Acute	0.0263	<u>11</u>	100
a.s.	N	Fish (Pimephales promelas)	0.147	Chronic	0.0263	<u>5.6</u>	10
a.s.	N	Aquatic invertebrates (Daphnia magna)	0.23	Acute	0.0263	<u>8.7</u>	100
'250 SC'	N	Aquatic invertebrates (Daphnia magna)	0.11	Acute	0.0263	<u>4.2</u>	100

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
a.s.	Ν	Sediment-dwelling organisms (Chironomus riparius)	0.8	Chronic	0.0263	30	10
a.s.	Ν	Aquatic invertebrates (<i>Macrocyclops fuscus</i>)	0.13	Acute	0.0263	<u>4.9</u>	100
a.s.	Ν	Aquatic invertebrates (<i>Mysidopsis bahia</i>)	0.055	Acute	0.0263	<u>2.1</u>	100
a.s.	Ν	Aquatic invertebrates (Daphnia magna)	0.044	Chronic	0.0263	<u>1.7</u>	10
a.s.	Ν	Aquatic invertebrates (<i>Mysidopsis bahia</i>)	0.00954	Chronic	0.0263	<u>0.4</u>	10
a.s.	Ν	Algae (Navicula pelliculosa)	0.014	Chronic	0.0263	<u>0.5</u>	10
`250 SC'	N	Algae (Selenastrum capricornutum)	0.16	Chronic	0.0263	<u>6.1</u>	10

TER for aquatic organisms at FOCUS Step 2 assuming application to winter cereals in SMS (for details see Table B.8.6.7)

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	city Time point scale L)		TER	Annex VI Trigger
a.s.	Ν	Fish (Oncorhynchus mykiss)	0.47	Acute	0.0145	<u>32</u>	100
'250 SC'	N	Fish (Oncorhynchus mykiss)	0.28	Acute	0.0145	<u>19</u>	100
a.s.	N	Fish (Pimephales promelas)	0.147	Chronic	0.0145	10	10
a.s.	N	Aquatic invertebrates (Daphnia magna)	0.23	Acute	0.0145	<u>16</u>	100
'250 SC'	N	Aquatic invertebrates (Daphnia magna)	0.11	Acute	0.0145	<u>7.6</u>	100
a.s.	N	Sediment-dwelling organisms (Chironomus riparius)	0.8	Chronic	0.0145	55	10
a.s.	N	Aquatic invertebrates (<i>Macrocyclops fuscus</i>)	0.13	Acute	0.0145	<u>9.0</u>	100
a.s.	N	Aquatic invertebrates (Mysidopsis bahia)	0.055	Acute	0.0145	<u>3.8</u>	100

Test substance	N/S	Organism	Toxicity endpoint (mg a.s./L)	Time scale	PEC _i (mg a.s./L)	TER	Annex VI Trigger
a.s.	Ν	Aquatic invertebrates (Daphnia magna)	0.044	Chronic	0.0145	<u>3.0</u>	10
a.s.	N	Aquatic invertebrates (<i>Mysidopsis bahia</i>)	0.00954	Chronic	0.0145	<u>0.7</u>	10
a.s.	Ν	Algae (Navicula pelliculosa)	0.014	Chronic	0.0145	<u>1.0</u>	10
'250 SC'	Ν	Algae (Selenastrum capricornutum)	0.16	Chronic	0.0145	11	10

Refined aquatic risk assessment using higher tier FOCUS modelling.

FOCUS Step 3

Brassicae

Acute and chronic fish toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and Tables B.8.6.24 and B.8.6.28).

	Toxicity endpoint (µg a.s./L)		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
			D3(Vredepel)	d	1.584	177	
			D4(Skousbo)	р	0.447	626	
			D4(Skousbo)	S	1.185	236	
			R1(Weiherbach)	р	0.746	375	
Fish	280	Acute	R1(Weiherbach)	s	3.512	<u>80</u>	100
(O. mykiss)			R2 (Porto)	S	1.505	186	
			R3(Bologna)	S	5.806	<u>48</u>	
			R4(Roujan)	S	7.584	37	
			D3(Vredepel)	d	1.584	93	
			D4(Skousbo)	р	0.447	329	
			D4(Skousbo)	s	1.185	124	
			R1(Weiherbach)	р	0.746	197	
Fish	147	Chronic	R1(Weiherbach)	S	3.512	42	10
(Pimephales			R2 (Porto)	S	1.505	98	
promelas)			R3(Bologna)	S	5.806	<u>25</u>	
			R4(Roujan)	S	7.584	<u>19</u>	

Acute aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and Tables B.8.6.24 and B.8.6.28)

Toxicity (µg a	endpoint a.s./L)	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
		D3(Vredepel)	d	1.584	<u>69</u>	
		D4(Skousbo)	р	0.447	246	
		D4(Skousbo)	S	1.185	<u>93</u>	

	Toxicity	endpoint	FOC	US Step	3	TER	Annex
	(µg a		worse case g	lobal ma	x PECsw		VI
			(μ;				
			R1(Weiherbach)	р	0.746	147	
Daphnia	110	Acute	R1(Weiherbach)	s	3.512	<u>31</u>	100
magna			R2 (Porto)	S	1.505	<u>73</u>	
			R3(Bologna)	S	5.806	<u>19</u>	
			R4(Roujan)	s	7.584	<u>14</u>	
			D3(Vredepel)	d	1.584	<u>82</u>	
			D4(Skousbo)	р	0.447	291	
			D4(Skousbo)	s	1.185	110	
Macrocyclop	130	Acute	R1(Weiherbach)	р	0.746	174	
s fuscus			R1(Weiherbach)	s	3.512	<u>37</u>	100
			R2 (Porto)	s	1.505	<u>86</u>	
			R3(Bologna)	S	5.806	22	
			R4(Roujan)	S	7.584	<u>17</u>	
			D3(Vredepel)	d	1.584	<u>34</u>	
			D4(Skousbo)	р	0.447	123	
			D4(Skousbo)	S	1.185	<u>46</u>	
Mysidopsis	55	Acute	R1(Weiherbach)	р	0.746	<u>6.7</u>	
bahia			R1(Weiherbach)	s	3.512	<u>16</u>	100
			R2 (Porto)	S	1.505	<u>36</u>	
			R3(Bologna)	S	5.806	<u>9.5</u>	
			R4(Roujan)	S	7.584	7.5	

Chronic aquatic invertebrate toxicity/exposure ratios (TERs) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and Tables B.8.6.24 and B.8.6.28)

	Toxicity (µg a	endpoint a.s./L)	FOC worse case g (µ	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			
			D3(Vredepel)	d	1.584	28	
			D4(Skousbo)	р	0.447	98	
			D4(Skousbo)	s	1.185	37	
Daphnia	44	Chronic	R1(Weiherbach)	р	0.746	59	
magna			R1(Weiherbach)	S	3.512	12	10
			R2 (Porto)	S	1.505	29	
			R3(Bologna)	S	5.806	7.6	
			R4(Roujan)	S	7.584	<u>5.8</u>	
			D3(Vredepel)	d	1.584	<u>6.0</u>	
			D4(Skousbo)	р	0.447	21	
Mysidopsis			D4(Skousbo)	S	1.185	<u>8.1</u>	
bahia	9.54	Chronic	R1(Weiherbach)	р	0.746	13	
			R1(Weiherbach)	S	3.512	2.7	10
			R2 (Porto)	S	1.505	<u>6.3</u>	
			R3(Bologna)	S	5.806	1.6	
			R4(Roujan)	S	7.584	1.3	

Algae toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and Tables B.8.6.24 and B.8.6.28)

	Toxicity (μg a	endpoint a.s./L)	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
			D3(Vredepel)	d	1.584	<u>8.8</u>	
			D4(Skousbo)	р	0.447	31	
			D4(Skousbo)	S	1.185	12	
Navicula	14	Chronic	R1(Weiherbach)	р	0.746	19	
pelliculosa			R1(Weiherbach)	S	3.512	<u>4.0</u>	10
			R2 (Porto)	S	1.505	<u>9.3</u>	
			R3(Bologna)	S	5.806	<u>2.4</u>	
			R4(Roujan)	S	7.584	1.8	

Spring cereals

Acute fish toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and Table B.8.6.32)

	Toxicity endpoint (µg a.s./L)		FOCU worse case glo	FOCUS Step 3 worse case global max PECsw			
			(µg	a.s./1)	1		
			D1(Lanna)	d	3.432	<u>82</u>	
			D1(Lanna)	S	2.143	131	
			D3(Vredepel)	d	1.589	176	
			D4(Skousbo)	р	0.851	329	
Fish	280	Acute	D4(Skousbo)	S	1.367	205	100
(O. mykiss)			D5 (La Jailliere)	р	0.108	2592	
			D5 (La Jailliere)	S	1.478	189	-
			R4(Roujan)	S	3.437	<u>81</u>	
			D1(Lanna)	d	3.432	43	
			D1(Lanna)	S	2.143	69	
			D3(Vredepel)	d	1.589	92	
			D4(Skousbo)	р	0.851	173	
Fish	147	Chronic	D4(Skousbo)	S	1.367	107	10
(Pimephales			D5 (La Jailliere)	р	0.108	1361	
promelas)			D5 (La Jailliere)	S	1.478	99	
			R4(Roujan)	S	3.437	43	

Acute aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and Tables B.8.6.32 and B.8.6.36)

	Toxicit (μg	y endpoint a.s./L)	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
			D1(Lanna)	d	3.432	<u>32</u>	
			D1(Lanna)	S	2.143	<u>51</u>	100
			D3(Vredepel)	d	1.589	69	
			D4(Skousbo)	р	0.851	129	
Daphnia	110	Acute	D4(Skousbo)	S	1.367	<u>80</u>	
magna			D5 (La Jailliere)	р	0.108	407	
			D5 (La Jailliere)	S	1.478	<u>74</u>	
			R4(Roujan)	S	3.437	<u>32</u>	
			D1(Lanna)	d	3.432	38	

	Toxicity (µg a	endpoint .s./L)	FOC worse case g (µ	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			Annex VI
			D1(Lanna)	S	2.143	<u>61</u>	
			D3(Vredepel)	d	1.589	<u>82</u>	
Macrocyclop	130	Acute	D4(Skousbo)	р	0.851	<u>153</u>	
s fuscus			D4(Skousbo)	S	1.367	<u>95</u>	100
			D5 (La Jailliere)	р	0.108	1204	
			D5 (La Jailliere)	S	1.478	88	
			R4(Roujan)	S	3.437	38	
			D1(Lanna)	d	3.432	<u>16</u>	
			D1(Lanna)	S	2.143	26	
			D3(Vredepel)	d	1.589	35	
Mysidopsis	55	Acute	D4(Skousbo)	р	0.851	65	
bahia			D4(Skousbo)	S	1.367	40	100
			D5 (La Jailliere)	р	0.108	509	
			D5 (La Jailliere)	S	1.478	37	
			R4(Roujan)	S	3.437	16	

Chronic aquatic invertebrate toxicity/exposure ratios (TERs) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and Tables B.8.6.32 and B.8.6.36)

	Toxicity (µg a	endpoint a.s./L)	FOC worse case g (µ	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			
			D1(Lanna)	d	3.432	13	
			D1(Lanna)	S	2.143	20	
			D3(Vredepel)	d	1.589	28	
Daphnia	44	Chronic	D4(Skousbo)	р	0.851	52	
magna			D4(Skousbo)	S	1.367	32	10
			D5 (La Jailliere)	р	0.108	407	
			D5 (La Jailliere)	S	1.478	30	
			R4(Roujan)	S	3.437	13	
			D1(Lanna)	d	3.432	<u>2.8</u>	
			D1(Lanna)	S	2.143	<u>4.4</u>	
Mysidopsis			D3(Vredepel)	d	1.589	<u>6.0</u>	
bahia	9.54	Chronic	D4(Skousbo)	р	0.851	11	
			D4(Skousbo)	S	1.367	7.0	10
			D5 (La Jailliere)	р	0.108	88]
			D5 (La Jailliere)	S	1.478	6.5	
			R4(Roujan)	S	3.437	2.8]

Algae toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and Tables B.8.6.32 and B.8.6.36)

Toxicity endpoint (µg a.s./L)		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
		D1(Lanna)	d	3.432	<u>4.1</u>	
		D1(Lanna)	S	2.143	<u>6.5</u>	
		D3(Vredepel)	d	1.589	<u>8.8</u>	

Navicula			D4(Skousbo)	р	0.851	16	
pelliculosa	14	Acute	D4(Skousbo)	S	1.367	10	10
1			D5 (La Jailliere)	р	0.108	129	
			D5 (La Jailliere)	S	1.478	<u>9.5</u>	
			R4(Roujan)	S	3.437	4.1	

Winter cereals

Acute and chronic fish toxicity/exposure ratios (TERs) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and Tables B.8.6.40 and B.8.6.44)

	Toxicity endpoint (µg a.s./L)		FOC worse case g	FOCUS Step 3 worse case global max PECsw			
			μ̈́)	g a.s./L)			
			D1(Lanna)	d	3.684	<u>76</u>	
			D1(Lanna)	S	2.300	122	
			D2(Brimstone)	d	4.208	<u>66</u>	
Fish			D2(Brimstone)	S	2.629	106	
			D3(Vredepel)	d	1.584	177	
Fish	280	Acute	D4(Skousbo)	р	0.764	366	100
(O. mykiss)			D4(Skousbo)	S	1.370	204	
			D5(La Jailliere)	р	0.208	1346	
			D5(La Jailliere)	S	1.461	192	
			D6(Thiva)	d	1.593	176	
			R1(Weiherbach)	р	0.549	510	
			R1(Weiherbach)	S	3.042	<u>92</u>	
			R3 (Bologna)	S	2.605	107	
			D1(Lanna)	d	3.684	<u>40</u>	
			D1(Lanna)	S	2.300	64	
			D2(Brimstone)	d	4.208	<u>35</u>	
			D2(Brimstone)	S	2.629	56	
			D3(Vredepel)	d	1.584	93	
Fish	147	Acute	D4(Skousbo)	р	0.764	192	10
(Pimephales			D4(Skousbo)	S	1.370	107	
promelas)			D5(La Jailliere)	р	0.208	707	
			D5(La Jailliere)	S	1.461	101	
			D6(Thiva)	d	1.593	92	
			R1(Weiherbach)	р	0.549	268	
			R1(Weiherbach)	S	3.042	<u>48</u>	
			R3 (Bologna)	S	2.605	56	
			R4 (Roujan)	S	4.585	32	

Acute aquatic invertebrate toxicity/exposure ratios (TERs) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and Tables B.8.6.40 and B.8.6.44)

Toxicity endpoint (µg a.s./L)		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
		D1(Lanna)	d	3.684	<u>30</u>	
		D1(Lanna)	S	2.300	<u>48</u>	
		D2(Brimstone)	d	4.208	<u>26</u>	

	Toxicity	endpoint	FOC	US Step 3	3	TER	Annex
	(µg a	.s./L)	worse case g	lobal max	x PECsw		VI
			(μ	g a.s./L)			
			D2(Brimstone)	S	2.629	42	
Daphnia	110	Acute	D3(Vredepel)	d	1.584	69	100
magna			D4(Skousbo)	р	0.764	144	
			D4(Skousbo)	S	1.370	80	
			D5(La Jailliere)	р	0.208	529	
			D5(La Jailliere)	S	1.461	75	
			D6(Thiva)	d	1.593	<u>69</u>	
			R1(Weiherbach)	р	0.549	200	
			R1(Weiherbach)	S	3.042	<u>36</u>	
			R3 (Bologna)	S	2.605	<u>42</u>	
			R4 (Roujan)	s	4.585	<u>24</u>	
			D1(Lanna)	d	3.684	<u>35</u>	
			D1(Lanna)	S	2.300	<u>56</u>	
			D2(Brimstone)	d	4.208	<u>31</u>	
			D2(Brimstone)	S	2.629	<u>49</u>	
			D3(Vredepel)	d	1.584	<u>82</u>	
Macrocyclop	130	Acute	D4(Skousbo)	р	0.764	170	100
s fuscus			D4(Skousbo)	S	1.370	<u>95</u>	
			D5(La Jailliere)	р	0.208	625	
			D5(La Jailliere)	S	1.461	89	
			D6(Thiva)	d	1.593	<u>82</u>	
			R1(Weiherbach)	р	0.549	237	
			R1(Weiherbach)	s	3.042	<u>43</u>	
			R3 (Bologna)	S	2.605	<u>50</u>	
			R4 (Roujan)	S	4.585	<u>28</u>	
			D1(Lanna)	d	3.684	<u>15</u>	
			D1(Lanna)	S	2.3	<u>24</u>	
			D2(Brimstone)	d	4.208	<u>13</u>	
			D2(Brimstone)	S	2.629	<u>21</u>	
			D3(Vredepel)	d	1.584	<u>35</u>	
			D4(Skousbo)	р	0.764	<u>72</u>	100
Mysidopsis	55	Acute	D4(Skousbo)	S	1.37	<u>40</u>	100
bahia			D5(La Jailliere)	р	0.208	264	
			D5(La Jailliere)	S	1.461	<u>38</u>	
			D6(Thiva)	d	1.593	35	
			R1(Weiherbach)	р	0.549	100	
			R1(Weiherbach)	S	3.042	<u>18</u>	
			R3 (Bologna)	S	2.605	21	
			R4 (Roujan)	S	4.585	12	

Chronic aquatic invertebrate toxicity/exposure ratios (TERs) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and Tables B.8.6.40 and B.8.6.44)

Toxicity endpoint (µg a.s./L)		FOC worse case g (µ	CUS Step lobal max g a.s./L)	3 x PECsw	TER	Annex VI
		D1(Lanna)	d	3.684	12	
		D1(Lanna)	S	2.3	19	

	Toxicity (µg a	endpoint .s./L)	FOC worse case g	US Step lobal max	3 x PECsw	TER	Annex VI
			(μ				
			D2(Brimstone)	d	4.208	10	
Danhnia	44	Chronic	D2(Brimstone)	S	2.629	17	
magna			D3(Vredepel)	d	1.584	28	10
			D4(Skousbo)	р	0.764	58	
			D4(Skousbo)	S	1.37	32	
			D5(La Jailliere)	р	0.208	211	
			D5(La Jailliere)	S	1.461	30	
			D6(Thiva)	d	1.593	28	
			R1(Weiherbach)	р	0.549	80	
			R1(Weiherbach)	S	3.042	14	
			R3 (Bologna)	S	2.605	17	
			R4 (Roujan)	S	4.585	<u>9.6</u>	
			D1(Lanna)	d	3.684	<u>2.6</u>	
			D1(Lanna)	S	2.3	<u>4.1</u>	
			D2(Brimstone)	d	4.208	<u>2.3</u>	
		~ .	D2(Brimstone)	S	2.629	<u>3.6</u>	
Mysidopsis	9.54	Chronic	D3(Vredepel)	d	1.584	<u>6.0</u>	10
bahia			D4(Skousbo)	р	0.764	12	10
			D4(Skousbo)	S	1.37	<u>7.0</u>	
			D5(La Jailliere)	р	0.208	46	
			D5(La Jailliere)	S	1.461	<u>6.5</u>	
			D6(Thiva)	d	1.593	<u>6.0</u>	
			R1(Weiherbach)	р	0.549	17	
			R1(Weiherbach)	S	3.042	<u>3.1</u>	
			R3 (Bologna)	S	2.605	<u>3.7</u>	
			R4 (Roujan)	S	4.585	<u>2.1</u>	

Algae toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and Tables B.8.6.40 and B.8.6.44)

	Toxicity (μg a	endpoint .s./L)	FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
			D1(Lanna)	d	3.684	3.8	
Navicula			D1(Lanna)	S	2.300	6.1	
			D2(Brimstone)	d	4.208	3.3	
			D2(Brimstone)	S	2.629	5.3	
		Chronic	D3(Vredepel)	d	1.584	<u>8.8</u>	
	14		D4(Skousbo)	р	0.764	18	10
pelliculosa			D4(Skousbo)	S	1.370	<u>10</u>	
			D5(La Jailliere)	р	0.208	67	
			D5(La Jailliere)	S	1.461	<u>9.6</u>	
			D6(Thiva)	d	1.593	<u>8.8</u>	
			R1(Weiherbach)	р	0.549	25	
			R1(Weiherbach)	S	3.042	4.6	
			R3 (Bologna)	s	2.605	5.4	
			R4 (Roujan)	s	4.585	3.1	

Refined risk assessment for fish – the refined risk assessment used the endpoint from the study using the active substance rather than the formulation, i.e. the endpoint was 470 μ g a.s./L compared to 270 μ g a.s./L used in the above risk assessment.

Brassicae

Acute fish toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and B.8.6.24)

	Toxicity endpoint (µg a.s./L) ¹		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
			D3(Vredepel)	d	1.584	297	
		Acute	D4(Skousbo)	р	0.447	1051	100
			D4(Skousbo)	S	1.185	397	
			R1(Weiherbach)	р	0.746	630	
Fish	470		R1(Weiherbach)	S	3.512	134	
(O mykiss)			R2 (Porto)	S	1.505	312	
			R3(Bologna)	S	5.806	<u>81</u>	
			R4(Roujan)	S	7.584	<u>62</u>	

¹Endpoint based on study that used the active substance rather than the formulation

Spring cereals

Acute fish toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and B.8.6.32)

	Toxicity endpoint (μg a.s./L) ¹		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
			D1(Lanna)	d	3.432	137	
	470	Acute	D1(Lanna)	S	2.143	219	100
			D3(Vredepel)	d	1.589	296	
			D4(Skousbo)	р	0.851	552	
Fish			D4(Skousbo)	S	1.367	344	
(O mykiss)			D5 (La Jailliere)	р	0.108	4352	
			D5 (La Jailliere)	S	1.478	318	
			R4(Roujan)	S	3.437	137	

¹Endpoint based on study that used the active substance rather than the formulation

Winter cereals

Acute fish toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and Tables B.8.6.32 and B.8.6.36)

Toxicity endpoint (µg a.s./L) ¹		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Annex VI
		D1(Lanna)	d	3.684	127	
		D1(Lanna)	S	2.300	204	
		D2(Brimstone)	d	4.208	112	
		D2(Brimstone)	S	2.629	179	

			D3(Vredepel)	d	1.584	297	
Fish	470	Acute	D4(Skousbo)	р	0.764	615	100
(O mykiss)			D4(Skousbo)	S	1.370	343	
			D5(La Jailliere)	р	0.208	2250	
			D5(La Jailliere)	S	1.461	322	
			D6(Thiva)	d	1.593	295	
			R1(Weiherbach)	р	0.549	856	
			R1(Weiherbach)	S	3.042	155	
			R3 (Bologna)	S	2.605	180	
			R4 (Roujan)	S	4.585	103	

¹Endpoint based on study that used the active substance rather than the formulation

Refined risk assessment using the 'regulatory concentration' of 5 μ g a.s./L; the regulatory concentration was obtained by using information from the mesocosm as well as the lower limit of the HC5 and regulatory concentration based on the 'Method 1' of the PPR opinion¹¹. These latter approaches were based on the following additional aquatic invertebrate data.

Summary table of all available data on the acute toxicity of azoxystrobin to aquatic invertebrates.

Species	48-h EC/LC50	Reference; report
	(µg a.s./L)	number (a)
Mysidopsis bahia (marine shrimp)	68	Grinell et al, 1993; BL4785/B
Mysidopsis bahia (marine shrimp)	55* (96 hour LC50)	Grinell et al, 1993; BL4785/B
Macrocyclops fuscus (Cyclopoid copepod crustacean)	130	Farrelly et al, 1995a; RJ1793B
Daphnia pulex (Water flea; cladoceran crustacean)	200	Rapley et al, 1995b; RJ1798B
Chironomus riparius (Midge larva; dipteran insect)	210	Farrelly et al, 1995d; RJ1792B
Daphnia magna (Water flea; cladoceran crustacean)	280	Rapley et al, 1995a; RJ1797B
Gammarus pulex (Freshwater shrimp; amphipod crustacean)	350	Farrelly et al, 1995b; RJ1782B
Crassostrea gigas (Pacific oyster)	1300	Kent et al, 1994; BL4842/B
<i>Chaoborus crystallinus</i> (Phantom midge larva; dipteran insect)	1600	Farrelly et al, 1995e; RJ1792B
Cloeon dipterum (Mayfly nymph; ephemeropteran insect)	3200	Farrelly et al, 1995g; RJ1795B
Asellus aquaticus (Water-louse; isopod crustacean)	>4000	Farrelly et al, 1995c; RJ1789B
Ischnura elegans (Damselfly nymph; zygopteran insect)	>4000	Farrelly et al. 1995f; RJ1794B
Notonecta glauca (Water-boatman; hemipteran insect)	>4000	Rapley et al 1995c; RJ1799B
Brachyonus calyciflorus (Rotifer)	>4000	Farrelly et al 1995h; RJ1791B
Lymnaea stagnalis (Pond snail; gastropod mollusc)	>4000	Farrelly et al 1995i; RJ1796B

¹¹ See ref <u>http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178620775612.htm</u>

* The Mysid study was conducted over 96 hours, the Notifier proposed using the 48 hour end point as this was in line with the duration of the other studies. The RMS has carried out an assessment using both end points, i.e. the 48 hour LC_{50} of 68 µg a.s./L and the 96 hour LC_{50} of 55 µg a.s./L.

Acute aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and B.8.6.24)

	Toxicity endpoint (µg a.s./L) ¹²		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Trigger value ¹³
		Acute + Chronic	D3(Vredepel)	D	1.584	2.1	
			D4(Skousbo)	Р	0.447	7.4	-
			D4(Skousbo)	S	1.185	2.8	
			R1(Weiherbach)	Р	0.746	4.4	1
Aquatic	3.3		R1(Weiherbach)	S	3.512	<u>0.9</u>	
invertebrates			R2 (Porto)	S	1.505	2.2	
			R3(Bologna)	S	5.806	<u>0.6</u>	
			R4(Roujan)	S	7.584	<u>0.4</u>	

Acute and chronic aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and B.8.6.32)

	Toxicity (µg a.	endpoint s./L) ¹⁴	FOC worse case g (µ	TER	Trigger value ¹⁵		
			D1(Lanna)	d	3.432	<u>0.9</u>	
		Acute + chronic	D1(Lanna)	S	2.143	1.5	1
			D3(Vredepel)	d	1.589	2.1	
Aquatic	3.3		D4(Skousbo)	р	0.851	3.9	
invertebrates			D4(Skousbo)	S	1.367	2.4	
			D5 (La Jailliere)	р	0.108	30	
			D5 (La Jailliere)	S	1.478	2.2	
			R4(Roujan)	S	3.437	0.9	

Acute aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and B.8.6.40)

	Toxicity endpoint (µg a.s./L ¹⁶		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Trigger value ¹⁷
			D1(Lanna)	d	3.684	0.9	
			D1(Lanna)	S	2.300	1.4	
			D2(Brimstone)	d	4.208	<u>0.8</u>	
Aquatic	3.3	Acute +	D2(Brimstone)	S	2.629	1.3	
invertebrates		chronic	D3(Vredepel)	d	1.584	2.1	1

 $^{^{12}}$ This endpoint is based on data from the mesocosm study, the first tier toxicity data and the lower limit of the HC5 – see EFSA conclusion for full details.

¹³ Amended trigger value as the assessment factor has been built in to the endpoint.

¹⁴ This endpoint is based on data from the mesocosm study, the first tier toxicity data and the lower limit of the HC5.

¹⁵ Amended trigger value as the assessment factor has been built in to the endpoint.

¹⁶ This endpoint is based on data from the mesocosm study, the first tier toxicity data and the lower limit of the HC5.

¹⁷ Amended trigger value as the assessment factor has been built in to the endpoint.

Toxicity endpoint (µg a.s./L ¹⁶		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Trigger value ¹⁷
		D4(Skousbo)	р	0.764	4.3	
		D4(Skousbo)	S	1.370	2.4	
		D5(La Jailliere)	р	0.208	15.9	
		D5(La Jailliere)	S	1.461	2.2	
		D6(Thiva)	d	1.593	2.1	
		R1(Weiherbach)	р	0.549	6.0	
		R1(Weiherbach)	S	3.042	1.1	
		R3 (Bologna)	S	2.605	1.3	
		R4 (Roujan)	S	4.585	0.7	

Refined risk assessment for algae

Algae toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on brassicae (for further details see Section B.8.6 and Tables B.8.6.24 and B.8.6.28)

	Toxicity endpoint (µg a.s./L)		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Trigger value
			D3(Vredepel)	d	1.584	165	
	262	Chronic	D4(Skousbo)	р	0.447	586	
			D4(Skousbo)	S	1.185	221	10
			R1(Weiherbach)	р	0.746	351	
Algae			R1(Weiherbach)	S	3.512	75	
			R2 (Porto)	S	1.505	174	
			R3(Bologna)	S	5.806	45	
			R4(Roujan)	S	7.584	34	

Acute and chronic aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on spring cereals (for further details see Section B.8.6 and Tables B.8.6.32 and B.8.6.36)

	Toxicity endpoint (µg a.s./L)		FOCUS Step 3 worse case global max PECsw (µg a.s./L)			TER	Trigger value
			D1(Lanna)	d	3.432	76	
	262	Chronic	D1(Lanna)	S	2.143	122	10
			D3(Vredepel)	d	1.589	165	
			D4(Skousbo)	р	0.851	308	
Algae			D4(Skousbo)	S	1.367	192	
			D5 (La Jailliere)	р	0.108	2426	
			D5 (La Jailliere)	S	1.478	177	
			R4(Roujan)	S	3.437	76	

Acute aquatic invertebrate toxicity/exposure ratios (TER) for azoxystrobin FOCUS Step3 PEC for the use on winter cereals (for further details see Section B.8.6 and B.8.6.40 and B.8.6.44)

	Toxicity endpoint (µg a.s./L)		FOCUS Step 3 worse case global max PECsw			TER	Trigger value
			(1-8 -				
			D1(Lanna)	d	3.684	71	
			D1(Lanna)	S	2.300	114	
			D2(Brimstone)	d	4.208	62	
			D2(Brimstone)	S	2.629	100	
Algae	262	Chronic	D3(Vredepel)	d	1.584	165	10
			D4(Skousbo)	р	0.764	343	
			D4(Skousbo)	S	1.370	191	
			D5(La Jailliere)	р	0.208	1260	
			D5(La Jailliere)	S	1.461	179	
			D6(Thiva)	d	1.593	164	
			R1(Weiherbach)	р	0.549	477	
			R1(Weiherbach)	S	3.042	86	
			R3 (Bologna)	S	2.605	100	
			R4 (Roujan)	S	4.585	57	

Bioconcentration				
	Active substance			
logP _{O/W}	2.5			
Bioconcentration factor (BCF) ¹	n.n.			
Annex VI Trigger for the bioconcentration factor	n.r.			
Clearance time (days) (CT ₅₀)	n.r.			
(CT ₉₀)	n.r.			
Level and nature of residues (%) in organisms after the 14 day depuration phase	n.r.			

¹ only required if log $P_{O/W} > 3$.

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ µg/bee)	Acute contact toxicity (LD ₅₀ µg/bee)
a.s.	>25 µg a.s./bee	>200 µg a.s./bee
Preparation ¹	>200 µg a.s./bee	>200 µg a.s./bee

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Crop and application rate

Test substance	Route	Hazard quotient	Annex VI Trigger
a.s.	Contact	<1.25	50
a.s.	oral	<10	50

Test substance	Route	Hazard quotient	Annex VI Trigger
Preparation	Contact	<1.25	50
Preparation	oral	<1.25	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test	End point	Effect
	Substance		$(LR_{50} g a.s./ha^{1})$
Typhlodromus pyri	Glass plate	Mortality	>1500 g a.s./ha
Aphidius rhopalosiphi	Glass plate	Mortality	>1000 g a.s./ha

'A12705' – Cereals, 2 x 1.0L with 14 day interval (250 g a.s./ha; BBCH 31 on) and Brassicas, 2 x 1.0L with 12 day interval (250 g a.s./ha; BBCH 35 on)¹

Appl. rate (g a.s./ha)	MAF	Drift ² % @1m	VDF	SF	max. ex [g/]	xposure ha]	LR50 [g a.s./ha]	H	Q	AnnexVI
					in	off		in	off	
Aphidius	rhopalo	siphi								
250	1.7	-	-	-	425	-	>1000	< 0.425		2
250	1.7	2.38	10	10		10.2	>1000		< 0.01	2
Typhlodre	omus py	ri								
250	1.7	-	-	-	425	-	>1500	< 0.238		2
250	1.7	2.38	10	10		10.2	>1500		0.007	2

¹ Whilst the application interval is less for brassicas, i.e. 12 versus 14 days, the MAF according to ESCORT 2 is the same, i.e. the 'risk' from the two uses can be considered to be the same.

² SANCO 10329/2002

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

Test organism	Test substance	Time scale	Endpoint
Earthworms			
Eisenia fetida	a.s.	Acute 14 days	LC_{50} 283 mg a.s./kg d.w.soil ¹ ,
	YF10537	Chronic 8 weeks	NOEC 20 mg a.s./kg d.w.soil ²
	250SC	Chronic 8 weeks	NOEC 3.0 kg a.s./kg d.w.soil ¹
	'250 SC'	Acute	LC ₅₀ 881 mg a.s./kg d.w.soil ¹
	R234886	Acute	LC_{50} >1000 mg a.s./kg d.w.soil ²

Test organism	Test substance	Time scale	Endpoint
Earthworms			
	R401553 (SYN501657)	Acute	$LC_{50} > 1000 \text{ mg a.s./kg d.w.soil}$
	R402173 (SYN501114)	Acute	$LC_{50} > 1000 \text{ mg a.s./kg d.w.soil}$

¹ – endpoints taken from original DAR/agreed list of endpoints ² – endpoints submitted with the renewal of Annex I listing

Toxicity/exposure ratios for soil organisms

Cereals and Brassicas

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
	a.s.	Acute (corrected endpoint)	0.394 ²	359	10
	'YF 10537'	Chronic (corrected endpoint)	0.394 ²	25.4	5
	R234886	Acute (corrected endpoint)	0.110 ²	4545	10
	R401553	Acute (corrected endpoint)	0.036 ²	13889	10
	a.s.	Acute	0.196 ³	719	10
	a.s.	Chronic	0.196 ³	51	5
	R234886	Acute (corrected endpoint)	0.054 ³	9259	10
	R401553	Acute (corrected endpoint)	0.018 ³	27778	10
	R402173	Acute (corrected endpoint)	0.028 ³	17857	10
	R402173	Acute (corrected endpoint)	0.055 ³	9091	10
	a.s.	Acute	0.6464	219	10
	YF 10537	Chronic	0.646^4	15.5	5

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Other soil macro-	-organisms	•	·		
Collembola	'YF10537'	28d	Cereals 0.196 mg a.s./kg soil Brassicas 0.394 mg a.s./kg soil	127 64	5
Collembola	'YF10537'	28d NOECcorr=25	Peak accumulation PEC Brassicas 0.646 mg a.s./kg soil	39	5
Higher Tier - fie	ld litter bag study				
Straw degradation in soil	A12705A	max. 5% deviation from after 181d control straw degradation @ 0.5514 mg a.s./kg d.wt. soil	Cereals 0.196 mg a.s./kg soil Brassicas 0.394 mg a.s./kg soil assuming 5 cm incorporation depth;	Less than 10% effect at the initial PEC	10%5
Straw degradation in soil	A12705A	max. 5% deviation from after 181d control straw degradation @ 0.5514 mg a.s./kg d.wt. soil	Peak accumulation PEC Brassicas 0.646 mg a.s./kg soil assuming 5 cm incorporation depth;	Effects at 0.5514 mg a.s./kg soil are less than 10%	10% ⁵

² PEC based on two applications to brassicas at the rate of 2 times 250 g a.s./ha ³ PEC based on two applications to cereals at the rate of 2 times 250 g a.s./ha ⁴ PEC base don peak plateau concentration ⁵ threshold proposed by EPFES guidance

Test organism	Test substance	Time scale	Endpoint
Soil micro-organisms			
Nitrogen mineralisation	R234886	28 days	No effect at 1 and 10 mg/kg soil dry weight
	R401553	28 days	No effect at 0.528 and 2.643 mg test item /kg dry wt soil

Test organism	Test substance	Time scale	Endpoint
	R402173	28 days	No effect at 0.826 and 4.131 mg test item/kg dry soil
Carbon mineralisation	R234886	28 days	No effect at 1 and 10 mg/kg soil dry weight
	R401553	28 days	No effect at 0.528 and 2.643 mg test item /kg dry wt soil
	R402173	28 days	No effect at 0.826 and 4.131 mg test item/kg dry soil

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8) Preliminary screening data

Laboratory dose response tests

Most sensitive species	Test substance	ER ₅₀ (g/ha) ² vegetative vigour	$ER_{50} (g/ha)^2$ emergence	Exposure ¹ (g/ha) ²	TER	Trigger
Lettuce, radish, wheat	Azoxystrobin	n.a.	>20 mg a.s./kg soil emergence	0.009 mg a.s./kg soil	>2222	5

¹based on Ganzelmeier drift data)

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	end point
Activated sludge	NOEC
Pseudomonas sp	>3.2 mg/L

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	azoxystrobin
water	azoxystrobin
sediment	azoxystrobin
groundwater	azoxystrobin

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

	RMS/peer review proposal
Active substance	Hazard symbol: N Risk phrases: R50/53
	Safety phrases: S60/61

Preparation

RMS/peer review proposal

Hazard symbol: N Risk phrases: R50/53 Safety phrases: S60/61 or S35/37

APPENDIX B – USED COMPOUND CODE(S)

Code/Trivial name*	Chemical name	Structural formula
R234886 (Compound 2)	(2 <i>E</i>)-2-(2-{[6-(2-cyanophenoxy)pyrimidin- 4-yl]oxy}phenyl)-3-methoxyprop-2-enoic acid	
N1	glucosyl (<i>E</i>)-2-{2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl}- 3-methoxypropionate	CN O O OCH ₃ O Glucose
N2	glucosyl (2 <i>E</i>)-2-{2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl}- 3-methoxyacrylate	CN O O OCH ₃ O Glucose
02	glucosylmalonyl 2-{2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl}- 3-methoxypropionate	CN O OCH ₃ O Malony Iglucose
03	glucosylmalonyl (2 <i>E</i>)-2-{2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl}- 3-methoxyacrylate	CN O OCH ₃ O MalonyIglucose
U5	2-(2-{[6-(2-cyanophenoxy)pyrimidin-4- yl]oxy}phenyl)-3-methoxypropanoic acid	
R401553 M28	4-(2-cyanophenoxy)-6-hydroxypyrimidine or 2-[(6-hydroxypyrimidin-4- yl)oxy]benzonitrile	
R402173	2-[6-(2-cyanophenoxy)pyrimidin-4- yloxy]benzoic acid	
R405287 M42	6-(2-cyanophenoxy)-3-glucosylpyrimidin- 4-one	

R230310 Z-isomer of azoxystrobin M09	methyl (<i>Z</i>)-2-{2-[6-(2- cyanophenoxy)pyrimidin-4-yloxy]phenyl}- 3-methoxyacrylate	CN CH ₃ O OCH ₃
M20	(2-{[6-(2-cyanophenoxy)pyrimidin-4- yl]oxy}phenyl)acetic acid	
M13	2-hydroxybenzonitrile	ОН
K1	4-{[6-(2-cyanophenoxy)pyrimidin-4- yl]oxy}-3-[(1 <i>E</i>)-1,3-dimethoxy-3-oxoprop- 1-en-2-yl]phenyl glucopyranuronic acid	
L1	methyl (2 <i>E</i>)-2-(2-{[6-(2- cyanophenoxy)pyrimidin-4-yl]oxy}-x- hydroxyphenyl)-3-methoxyprop-2-enoate	
L4	S-(2-cyano-x-hydroxyphenyl)cysteine	
L9	2-{[6-(2-cyanophenoxy)pyrimidin-4- yl]oxy}-x-hydroxybenzoic acid	

* The metabolite name in bold is the name used in the conclusion.

ABBREVIATIONS

1/n	slope of Freundlich isotherm
3	decadic molar extinction coefficient
°C	degree Celsius (centigrade)
μg	microgram
μm	micrometer (micron)
a.s.	active substance
AChE	acetylcholinesterase
ADE	actual dermal exposure
ADI	accentable daily intake
ΔF	acceptuole dury muke
AOFI	accentable operator exposure level
ΔP	alkaline phosphatase
	and radioactivity
	applied factoretry
ARID	actue reference dose
ASI	aspartate animotransferase (SGOT)
AV	avoidance factor
BCF	bioconcentration factor
BUN	blood urea nitrogen
bw	body weight
CAS	Chemical Abstract Service
CFU	colony forming units
ChE	cholinesterase
CI	confidence interval
CIPAC	Collaborative International Pesticide Analytical Council Limited
CL	confidence limits
d	day
DAA	days after application
DAR	draft assessment report
DAT	days after treatment
DFOP	double first order in parallel kinetics
DM	dry matter
DT ₅₀	period required for 50 percent disappearance (define method of estimation)
DT_{90}	period required for 90 percent disappearance (define method of estimation)
dw	dry weight
EbC ₅₀	effective concentration (biomass)
EC ₅₀	effective concentration
ECHA	European Chemical Agency
EEC	European Economic Community
FINECS	European Inventory of Existing Commercial Chemical Substances
ELINCS	European List of New Chemical Substances
FMDI	estimated maximum daily intake
ERIE!	emergence rate/effective rate median
ErC ₅₀	effective concentration (growth rate)
EIC ₅₀	European Union
EUDODOEM	European Onion European Predictive Operator Exposure Model
f(two)	time weighted everage factor
I(twa)	East and A mighture Organization of the United Nations
FAU	flome ionisation detector
	Traine tomsation detector
ГIК FOD	Food make rate
LORIZ	Tunctional observation battery
FUCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use
g	gram
GAP	good agricultural practice
efsa e

66	
GC	gas chromatography
GC-MSD	gas chromatography-mass selective detector
GC-NPD	gas chromatography-nitrogen phosphorous selective detector
GCPF	Global Crop Protection Federation (formerly known as GIFAP)
GGT	gamma glutamyl transferase
GM	geometric mean
02	growth stage
GSH	glutathion
h	hour(s)
ha	hectare
Hb	haemoglobin
Het	haematocrit
hI	hectolitre
	high pressure liquid chromotography
IIFLC	nigh pressure riquid chromatography
	or high performance liquid chromatography
HPLC-MS	high pressure liquid chromatography – mass spectrometry
HPLC-UV	high pressure liquid chromatography – ultra violet detection
HQ	hazard quotient
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ILV	independent laboratory validation
IL V	Interpretional Organization for Standardisation
150	
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and
	the Environment and the WHO Expert Group on Pesticide Residues (Joint
	Meeting on Pesticide Residues)
Kdoc	organic carbon linear adsorption coefficient
ko	kilogram
K ₋	Freundlich organic carbon adsorption coefficient
I I	litro
LC	liquid chromatography
LC_{50}	lethal concentration, median
LC-MS	liquid chromatography-mass spectrometry
LC-MS-MS	liquid chromatography with tandem mass spectrometry
LD_{50}	lethal dose, median; dosis letalis media
LOAEL	lowest observable adverse effect level
LOD	limit of detection
	limit of quantification (determination)
LOQ	
M/L	mixing and loading
MAF	multiple application factor
MCH	mean corpuscular haemoglobin
MCHC	mean corpuscular haemoglobin concentration
MCV	mean corpuscular volume
mg	milligram
mL	millilitre
mm	millimetro
	mass meutan aerodynamic diameter
MKL	maximum residue limit or level
MS	mass spectrometry
MSDS	material safety data sheet
MTD	maximum tolerated dose
MWHC	maximum water holding capacity
NESTI	national estimated short-term intake
ng	nanoaram
ng	nanograni

efsa

NOAEC	no observed adverse effect concentration
NOEAEC	no observed ecologically adverse effects concentration
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
OM	organic matter content
Pa	Pascal
PD	proportion of different food types
PEC	predicted environmental concentration
PEC	predicted environmental concentration in air
PEC	predicted environmental concentration in ground water
PEC	predicted environmental concentration in ground water
PEC sed	predicted environmental concentration in soil
PEC _{soil}	predicted environmental concentration in soft
PEC _{sw}	predicted environmental concentration in surface water
pH	pH-value
PHED	pesticide handler's exposure data
PHI	pre-harvest interval
PIE	potential inhalation exposure
pK _a	negative logarithm (to the base 10) of the dissociation constant
Pow	partition coefficient between <i>n</i> -octanol and water
POEM	Predictive Operator Exposure Model
PPE	personal protective equipment
ppm	parts per million (10^{-6})
ppp	plant protection product
PT	proportion of diet obtained in the treated area
QC	quality control
O SAR	quantitative structure-activity relationship
r^2	coefficient of determination
RAC	regulatory acceptable concentration
RPE	respiratory protective equipment
RUD	residue per unit dose
SC	suspension concentrate
SD	standard deviation
SEO	single first-order
	species sensitivity distribution
STMD	supervised trials median residue
	half life (define method of estimation)
ι _{1/2}	han-me (define method of estimation)
IEK	toxicity exposure ratio
I EK _A	toxicity exposure ratio for acute exposure
TERLT	toxicity exposure ratio following chronic exposure
TER _{ST}	toxicity exposure ratio following repeated exposure
TK	technical concentrate
	threshold limit value
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
TWA	time weighted average
UDS	unscheduled DNA synthesis
UV	ultraviolet
W/S	water/sediment
w/v	weight per volume
w/w	weight per weight
WHO	World Health Organisation
wk	week
vr	year
•	•